找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations; Mitsuhiro T. Nakao,Michael Plum,Yoshitaka

[復(fù)制鏈接]
樓主: antibody
31#
發(fā)表于 2025-3-26 22:10:52 | 只看該作者
32#
發(fā)表于 2025-3-27 04:15:33 | 只看該作者
Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations
33#
發(fā)表于 2025-3-27 08:45:54 | 只看該作者
34#
發(fā)表于 2025-3-27 09:29:04 | 只看該作者
Infinite-Dimensional Newton-Type Methodpplying the same principle as in Chaps. 1 and 2. After that, we confirm the existence of solutions by proving the contractility of the infinite-dimensional Newton-like operator with a residual form. Note that a projection into a finite-dimensional subspace and constructive error estimates of the projection play important and essential roles.
35#
發(fā)表于 2025-3-27 17:39:17 | 只看該作者
Basic Principle of the Verificationl improvements have since been made. This method consists of a projection and error estimations by the effective use of the compactness property of the relevant operator, and it can be represented in a rather generalized form in the examples below.
36#
發(fā)表于 2025-3-27 20:52:04 | 只看該作者
37#
發(fā)表于 2025-3-28 01:29:43 | 只看該作者
38#
發(fā)表于 2025-3-28 04:06:41 | 只看該作者
Other Problem Typesf second-order elliptic boundary value problems, where the linearized operator . lacks symmetry, whence a norm bound for .. cannot be computed via the spectrum of . or ....In this chapter we concentrate on the main ideas and partially will be a bit less extensive with technical details.
39#
發(fā)表于 2025-3-28 08:30:48 | 只看該作者
Eigenvalue Bounds for Self-Adjoint Eigenvalue Problemssical application is quantum physics, but also other fields like electro-dynamics (including optics) or statistical mechanics are governed by partial differential operators and related eigenvalue problems.
40#
發(fā)表于 2025-3-28 12:50:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 17:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永仁县| 金门县| 莱州市| 镇赉县| 灌云县| 思茅市| 襄樊市| 三原县| 衡水市| 高唐县| 康马县| 凤城市| 鄂托克前旗| 浮梁县| 名山县| 岑巩县| 松潘县| 徐闻县| 中牟县| 惠安县| 济南市| 塔河县| 介休市| 泾阳县| 益阳市| 建宁县| 抚宁县| 昌平区| 桃园县| 黔江区| 鹤岗市| 寿阳县| 景洪市| 乳山市| 新巴尔虎左旗| 开远市| 太仆寺旗| 平江县| 旬阳县| 娱乐| 茂名市|