找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Semigroups; J.C. Rosales,P. A. García-Sánchez Book 2009 Springer Science+Business Media, LLC 2009 Additive Semigroups.Embedding

[復(fù)制鏈接]
樓主: 筆記
21#
發(fā)表于 2025-3-25 06:00:20 | 只看該作者
22#
發(fā)表于 2025-3-25 10:02:36 | 只看該作者
978-1-4614-2456-7Springer Science+Business Media, LLC 2009
23#
發(fā)表于 2025-3-25 14:44:42 | 只看該作者
24#
發(fā)表于 2025-3-25 17:33:52 | 只看該作者
Introduction,Let ? be the set of nonnegative integers. A numerical semigroup is a nonempty subset . of ? that is closed under addition, contains the zero element, and whose complement in ? is finite.
25#
發(fā)表于 2025-3-25 20:17:15 | 只看該作者
The quotient of a numerical semigroup by a positive integer,A generalization of the linear Diophantine Frobenius problem can be stated as follows. Let ..,…,.. and . be positive integers with {..,…,..}=1. Find a formula for the largest multiple of . not belonging to 〈..,…,..〉.
26#
發(fā)表于 2025-3-26 02:38:37 | 只看該作者
27#
發(fā)表于 2025-3-26 07:47:04 | 只看該作者
Notable elements,invariants have their interpretation in this context, and this is the reason why their names may seem bizarre in the scope of monoids. In this sense the monograph [5] serves as an extraordinary dictionary between these apparently two different parts of Mathematics.
28#
發(fā)表于 2025-3-26 12:04:33 | 只看該作者
29#
發(fā)表于 2025-3-26 16:33:34 | 只看該作者
30#
發(fā)表于 2025-3-26 20:02:46 | 只看該作者
Jean Jacod,Philip Protterays, traffic breakdown, and evacuation dynamics.Covers both This volume in the .Encyclopedia of Complexity and Systems Science. (ECSS) covers such fascinating and practical topics as (i) Vehicular traffic flow theory, (ii) Studies of real field traffic data, (iii) Complex phenomena of self-organizat
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 21:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
周至县| 临武县| 莆田市| 泽库县| 阜宁县| 乐至县| 响水县| 辰溪县| 油尖旺区| 海兴县| 大埔县| 泸水县| 额敏县| 西吉县| 治多县| 谢通门县| 裕民县| 彝良县| 河池市| 通山县| 鄱阳县| 虎林市| 丰原市| 灵台县| 宣恩县| 高雄市| 宁阳县| 滦平县| 东兰县| 集贤县| 古浪县| 含山县| 太白县| 寻甸| 武冈市| 江川县| 和田市| 塔城市| 连山| 克拉玛依市| 北海市|