找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Semigroups; J.C. Rosales,P. A. García-Sánchez Book 2009 Springer Science+Business Media, LLC 2009 Additive Semigroups.Embedding

[復(fù)制鏈接]
查看: 22690|回復(fù): 47
樓主
發(fā)表于 2025-3-21 17:32:51 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Numerical Semigroups
編輯J.C. Rosales,P. A. García-Sánchez
視頻videohttp://file.papertrans.cn/670/669168/669168.mp4
概述First monograph devoted exclusively to the study of numerical semigroups.Presents various applications of numerical semigroups including number theory, coding theory, algebraic geometry, and others.Th
叢書名稱Developments in Mathematics
圖書封面Titlebook: Numerical Semigroups;  J.C. Rosales,P. A. García-Sánchez Book 2009 Springer Science+Business Media, LLC 2009 Additive Semigroups.Embedding
描述Let N be the set of nonnegative integers. A numerical semigroup is a nonempty subset S of N that is closed under addition, contains the zero element, and whose complement in N is ?nite. If n ,...,n are positive integers with gcd{n ,...,n } = 1, then the set hn ,..., 1 e 1 e 1 n i = {? n +··· + ? n | ? ,...,? ? N} is a numerical semigroup. Every numer e 1 1 e e 1 e ical semigroup is of this form. The simplicity of this concept makes it possible to state problems that are easy to understand but whose resolution is far from being trivial. This fact attracted several mathematicians like Frobenius and Sylvester at the end of the 19th century. This is how for instance the Frobenius problem arose, concerned with ?nding a formula depending on n ,...,n for the largest integer not belonging to hn ,...,n i (see [52] 1 e 1 e for a nice state of the art on this problem).
出版日期Book 2009
關(guān)鍵詞Additive Semigroups; Embedding Dimension; Frobenius Number; Group theory; Irreducible; Modular; Monoid; Num
版次1
doihttps://doi.org/10.1007/978-1-4419-0160-6
isbn_softcover978-1-4614-2456-7
isbn_ebook978-1-4419-0160-6Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightSpringer Science+Business Media, LLC 2009
The information of publication is updating

書目名稱Numerical Semigroups影響因子(影響力)




書目名稱Numerical Semigroups影響因子(影響力)學(xué)科排名




書目名稱Numerical Semigroups網(wǎng)絡(luò)公開度




書目名稱Numerical Semigroups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Numerical Semigroups被引頻次




書目名稱Numerical Semigroups被引頻次學(xué)科排名




書目名稱Numerical Semigroups年度引用




書目名稱Numerical Semigroups年度引用學(xué)科排名




書目名稱Numerical Semigroups讀者反饋




書目名稱Numerical Semigroups讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:10:01 | 只看該作者
Numerical semigroups with maximal embedding dimension,they have become specially renowned due to the existing applications to commutative algebra via their associated semigroup ring (see for instance [1, 5, 15, 16, 99, 100]). They are a source of examples of commutative rings with some maximal properties. As we mentioned in the introduction of Chapter
板凳
發(fā)表于 2025-3-22 01:38:17 | 只看該作者
Irreducible numerical semigroups, these semigroups is due mainly to Kunz, who in his manuscript [44] proves that a onedimensional analytically irreducible Noetherian local ring is Gorenstein if and only if its value semigroup is symmetric. Symmetric numerical semigroups always have odd Frobenius number. The translation of this conc
地板
發(fā)表于 2025-3-22 07:12:35 | 只看該作者
5#
發(fā)表于 2025-3-22 10:02:07 | 只看該作者
Presentations of a numerical semigroup,e fact that every finitely generated (commutative) monoid is finitely presented. Rédei’s proof is long and elaborated. Many other authors have given alternative and much simpler proofs than his (see for instance [31, 39, 41, 56]). Since numerical semigroups are cancellative monoids, a different appr
6#
發(fā)表于 2025-3-22 13:23:19 | 只看該作者
7#
發(fā)表于 2025-3-22 20:16:27 | 只看該作者
Numerical semigroups with embedding dimension three,h the help of Proposition 1.17 and what we know about embedding dimension two numerical semigroups, a formula for the Frobenius number and the genus of a symmetric numerical semigroup with embedding dimension three can easily be found. As for the pseudo-symmetric case, an expression for the Frobeniu
8#
發(fā)表于 2025-3-22 21:50:51 | 只看該作者
9#
發(fā)表于 2025-3-23 01:38:16 | 只看該作者
Book 2009and Sylvester at the end of the 19th century. This is how for instance the Frobenius problem arose, concerned with ?nding a formula depending on n ,...,n for the largest integer not belonging to hn ,...,n i (see [52] 1 e 1 e for a nice state of the art on this problem).
10#
發(fā)表于 2025-3-23 06:33:06 | 只看該作者
1389-2177 ber theory, coding theory, algebraic geometry, and others.ThLet N be the set of nonnegative integers. A numerical semigroup is a nonempty subset S of N that is closed under addition, contains the zero element, and whose complement in N is ?nite. If n ,...,n are positive integers with gcd{n ,...,n }
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 21:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
神木县| 长兴县| 延寿县| 襄垣县| 临西县| 辽宁省| 大冶市| 大安市| 黑水县| 融水| 当雄县| 阳信县| 乐至县| 东明县| 中西区| 西华县| 宝坻区| 淳化县| 通渭县| 上思县| 青州市| 西盟| 文昌市| 洞头县| 玛沁县| 永康市| 宜州市| 泾源县| 格尔木市| 黑龙江省| 荥经县| 玛多县| 禄丰县| 石河子市| 乌恰县| 金阳县| 舞阳县| 九龙县| 松溪县| 巢湖市| 莲花县|