找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Flows; FEF 2017 Selected Co Harald van Brummelen,Alessandro Corsini,Gianluigi Book 2020 Springer Nature Switzerland

[復(fù)制鏈接]
樓主: 不讓做的事
41#
發(fā)表于 2025-3-28 14:36:12 | 只看該作者
Density-Based Inverse Homogenization with Anisotropically Adapted Elements, here a standard density-based inverse homogenization technique with an anisotropic mesh adaptation procedure in the context of a finite element discretization. In this way, the optimized layouts are intrinsically smooth and ready to be manufactured.
42#
發(fā)表于 2025-3-28 21:28:01 | 只看該作者
Lecture Notes in Computational Science and Engineeringhttp://image.papertrans.cn/n/image/669063.jpg
43#
發(fā)表于 2025-3-29 01:53:33 | 只看該作者
44#
發(fā)表于 2025-3-29 03:04:03 | 只看該作者
High-Order Isogeometric Methods for Compressible Flows,ss the creation of oscillations and occurrence of non-physical values in the solution. This work provides early results for scalar conservation laws and lays the foundation for extending this approach to the compressible Euler equations in the next chapter.
45#
發(fā)表于 2025-3-29 08:02:15 | 只看該作者
High-Order Isogeometric Methods for Compressible Flows, Springer, Berlin, 2012). The underlying principles are reviewed and it is shown that linearized FCT-type flux limiting (Kuzmin, J Comput Phys 228(7):2517–2534, 2009) originally derived for nodal low-order finite elements ensures positivity-preservation for high-order B-Spline discretizations.
46#
發(fā)表于 2025-3-29 14:55:53 | 只看該作者
47#
發(fā)表于 2025-3-29 17:37:38 | 只看該作者
48#
發(fā)表于 2025-3-29 21:39:40 | 只看該作者
Andrzej Jaeschke,Matthias M?llerorithm provides fairly robust, accurate and precise estimates of the modal parameters, including damping ratios. This may potentially lead to a standardized, extensive characterization of modal damping ratios in structures, which is useful to gain knowledge about damping mechanisms in structures and to develop predictive models.
49#
發(fā)表于 2025-3-30 03:26:32 | 只看該作者
50#
發(fā)表于 2025-3-30 06:07:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 07:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上饶县| 巧家县| 瑞安市| 肇庆市| 徐水县| 临夏县| 乌审旗| 达日县| 仙桃市| 攀枝花市| 庆城县| 松桃| 阿勒泰市| 岳阳市| 北碚区| 荔浦县| 永顺县| 夏邑县| 盐边县| 遂川县| 河东区| 宣汉县| 克什克腾旗| 南充市| 岗巴县| 怀宁县| 新昌县| 博罗县| 东莞市| 石棉县| 瓦房店市| 海林市| 来宾市| 会理县| 绥滨县| 天全县| 苍南县| 万全县| 吐鲁番市| 濮阳市| 邵东县|