找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Flows; FEF 2017 Selected Co Harald van Brummelen,Alessandro Corsini,Gianluigi Book 2020 Springer Nature Switzerland

[復(fù)制鏈接]
查看: 54958|回復(fù): 69
樓主
發(fā)表于 2025-3-21 19:18:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Numerical Methods for Flows
副標(biāo)題FEF 2017 Selected Co
編輯Harald van Brummelen,Alessandro Corsini,Gianluigi
視頻videohttp://file.papertrans.cn/670/669063/669063.mp4
概述Provides a state-of-the-art review.Discusses a variety of topics in and applications of numerical methods for flows.Includes high-quality, peer-reviewed contributions
叢書(shū)名稱(chēng)Lecture Notes in Computational Science and Engineering
圖書(shū)封面Titlebook: Numerical Methods for Flows; FEF 2017 Selected Co Harald van Brummelen,Alessandro Corsini,Gianluigi  Book 2020 Springer Nature Switzerland
描述.This book includes selected contributions on applied mathematics, numerical analysis, numerical simulation and scientific computing related to fluid mechanics problems, presented at the FEF-“Finite Element for Flows” conference, held in Rome in spring 2017. Written by leading international experts and covering state-of-the-art topics in numerical simulation for flows, it provides fascinating insights into and perspectives on current and future methodological and numerical developments in computational science. As such, the book is a valuable resource for researchers, as well as Masters and Ph.D students..
出版日期Book 2020
關(guān)鍵詞computational mechanics; computational fluid dynamics; scientific computing; numerical analysis; numeric
版次1
doihttps://doi.org/10.1007/978-3-030-30705-9
isbn_softcover978-3-030-30707-3
isbn_ebook978-3-030-30705-9Series ISSN 1439-7358 Series E-ISSN 2197-7100
issn_series 1439-7358
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書(shū)目名稱(chēng)Numerical Methods for Flows影響因子(影響力)




書(shū)目名稱(chēng)Numerical Methods for Flows影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Numerical Methods for Flows網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Numerical Methods for Flows網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Numerical Methods for Flows被引頻次




書(shū)目名稱(chēng)Numerical Methods for Flows被引頻次學(xué)科排名




書(shū)目名稱(chēng)Numerical Methods for Flows年度引用




書(shū)目名稱(chēng)Numerical Methods for Flows年度引用學(xué)科排名




書(shū)目名稱(chēng)Numerical Methods for Flows讀者反饋




書(shū)目名稱(chēng)Numerical Methods for Flows讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:01:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:23:15 | 只看該作者
地板
發(fā)表于 2025-3-22 05:29:55 | 只看該作者
5#
發(fā)表于 2025-3-22 12:29:45 | 只看該作者
Simulations of Non-hydrostatic Flows by an Efficient and Accurate ,-Adaptive DG Method,eophysical flows. The proposed methods are able to capture phenomena at very different spatial scales, while minimizing the computational cost by means of a dynamical degree adaptation procedure and of a novel, fully second order, semi-implicit semi-Lagrangian time discretization. We then present no
6#
發(fā)表于 2025-3-22 16:01:37 | 只看該作者
7#
發(fā)表于 2025-3-22 19:40:57 | 只看該作者
8#
發(fā)表于 2025-3-22 21:16:12 | 只看該作者
,Space-Time NURBS-Enhanced Finite Elements for Solving the Compressible Navier–Stokes Equations,ventional finite element formulations, utilizes a NURBS-based computational domain representation. Such representations are typically available from Computer-Aided-Design tools. Within the NEFEM, the NURBS boundary definition is utilized only for elements that are touching the domain boundaries. The
9#
發(fā)表于 2025-3-23 03:03:45 | 只看該作者
Fluid Flow Simulation from Geometry Data Based on Point Clouds,D points without any connectivity. Assuming that a sufficient set of points can represent the underlying geometries with a high level of details, we present in this paper a method to perform CFD computations directly from the point cloud raw data. Using an error estimator, a level-set function is bu
10#
發(fā)表于 2025-3-23 07:19:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 07:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建水县| 永安市| 西充县| 张家口市| 呈贡县| 沂南县| 永春县| 汉沽区| 建宁县| 五原县| 衡东县| 丰宁| 桂林市| 石河子市| 巴南区| 汉源县| 抚宁县| 霍城县| 广宗县| 安新县| 城市| 团风县| 来安县| 巴林左旗| 东港市| 香港| 内丘县| 蒲江县| 奎屯市| 肥西县| 牙克石市| 普格县| 运城市| 西林县| 吉水县| 西安市| 林州市| 楚雄市| 若羌县| 新建县| 武定县|