找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Integration; Recent Developments, Patrick Keast,Graeme Fairweather Book 1987 D. Reidel Publishing Company, Dordrecht, Holland 198

[復制鏈接]
樓主: 復雜
41#
發(fā)表于 2025-3-28 15:55:30 | 只看該作者
42#
發(fā)表于 2025-3-28 20:54:38 | 只看該作者
43#
發(fā)表于 2025-3-29 00:28:12 | 只看該作者
44#
發(fā)表于 2025-3-29 04:53:00 | 只看該作者
Construction of Sequences of Embedded Cubature Formulae for Circular Symmetric Planar Regionsr of equations and unknowns can be reduced by imposing some structure on the formula. We construct cubature formulae for circular symmetric regions, with knots on regular polygons. Due to our special structure, we obtain a reduction of the number of equations and unknowns and the systems of nonlinea
45#
發(fā)表于 2025-3-29 09:25:40 | 只看該作者
Fully Symmetric Integration Rules for the Unit Four-Cubelips (1967), Stenger (1971), Keast (1979), Genz and Malik (1980, 1983). In two and three dimensions, there also exist several rules of different degrees and over different regions. The only rules for the 4-cube we have been able to find are one degree 7 rule by Stroud (1967) and one degree 5 rule by
46#
發(fā)表于 2025-3-29 13:12:04 | 只看該作者
On the Construction of Cubature Formulae with Few Nodes Using Groebner Basesdes. The formula exists if and only if F is an H-basis and some well-defined orthogonality conditions hold. Groebner bases and especially Buchberger’s algorithm for their computation allow an effective calculation of H-bases and easy proofs and generalizations of known methods based on H-bases. Groe
47#
發(fā)表于 2025-3-29 15:40:05 | 只看該作者
48#
發(fā)表于 2025-3-29 22:32:08 | 只看該作者
49#
發(fā)表于 2025-3-30 03:48:50 | 只看該作者
50#
發(fā)表于 2025-3-30 05:27:33 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 21:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
涞源县| 鄂托克旗| 桓仁| 桓台县| 崇义县| 邓州市| 成武县| 海口市| 巴里| 富顺县| 泸定县| 曲靖市| 六盘水市| 辉南县| 牟定县| 阳泉市| 遂溪县| 新密市| 治多县| 牡丹江市| 胶州市| 苍南县| 道孚县| 全椒县| 正定县| 仪征市| 安岳县| 天祝| 高要市| 龙门县| 锦州市| 定襄县| 鹿泉市| 大洼县| 新竹县| 桃江县| 滁州市| 庆元县| 额尔古纳市| 惠安县| 伊宁县|