找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Integration; Recent Developments, Patrick Keast,Graeme Fairweather Book 1987 D. Reidel Publishing Company, Dordrecht, Holland 198

[復(fù)制鏈接]
樓主: 復(fù)雜
31#
發(fā)表于 2025-3-27 00:58:40 | 只看該作者
32#
發(fā)表于 2025-3-27 01:36:00 | 只看該作者
Asymptotic Expansions and Their Applications in Numerical Integrationds. A generalization of the expansions to non-integer mesh ratios will allow extrapolation on a sequence of product offset trapezoidal rule sums which is invariant with respect to the group of the affine transformations of the .-simplex onto itself.
33#
發(fā)表于 2025-3-27 09:14:48 | 只看該作者
Book 1987: Recent Developments, Software and Applications‘, held at Dalhousie University, Halifax, Canada, August 11-15, 1986. The Workshop was attended by thirty-six scientists from eleven NATO countries. Thirteen invited lectures and twenty-two contributed lectures were presented, of which twenty-five appe
34#
發(fā)表于 2025-3-27 10:48:21 | 只看該作者
The Convergence of Noninterpolatory Product Integration Rulesn generalized piecewise polynomial interpolation. The second concerns rules involving modified moments for which there is a double limit process. First, convergence of an iterated limit is proved under assumptions similar to those required for polynomial product integration. Then, convergence of the
35#
發(fā)表于 2025-3-27 14:19:53 | 只看該作者
36#
發(fā)表于 2025-3-27 19:24:41 | 只看該作者
37#
發(fā)表于 2025-3-28 00:27:48 | 只看該作者
Quadrature Methods for the Determination of Zeros of Transcendental Functions - A Reviewre based on the classical theory of analytic functions, but, recently, relevant methods based on the elementary theory of real functions were also developed. On the other hand, purely numerical methods were also recently proposed. The common point of these methods is the use of numerical integration
38#
發(fā)表于 2025-3-28 02:45:58 | 只看該作者
39#
發(fā)表于 2025-3-28 07:46:05 | 只看該作者
40#
發(fā)表于 2025-3-28 11:50:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 21:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西藏| 杭锦旗| 红原县| 东乡| 沂南县| 建水县| 响水县| 盐边县| 资溪县| 韶关市| 江口县| 时尚| 五台县| 舟山市| 资溪县| 乌拉特前旗| 延寿县| 东阳市| 东丽区| 称多县| 谢通门县| 望城县| 浙江省| 游戏| 宁德市| 克拉玛依市| 昔阳县| 大姚县| 高碑店市| 金沙县| 商都县| 大安市| 浪卡子县| 英超| 修武县| 康乐县| 黑龙江省| 上栗县| 利津县| 晴隆县| 夹江县|