找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Integration; Recent Developments, Patrick Keast,Graeme Fairweather Book 1987 D. Reidel Publishing Company, Dordrecht, Holland 198

[復(fù)制鏈接]
樓主: 復(fù)雜
31#
發(fā)表于 2025-3-27 00:58:40 | 只看該作者
32#
發(fā)表于 2025-3-27 01:36:00 | 只看該作者
Asymptotic Expansions and Their Applications in Numerical Integrationds. A generalization of the expansions to non-integer mesh ratios will allow extrapolation on a sequence of product offset trapezoidal rule sums which is invariant with respect to the group of the affine transformations of the .-simplex onto itself.
33#
發(fā)表于 2025-3-27 09:14:48 | 只看該作者
Book 1987: Recent Developments, Software and Applications‘, held at Dalhousie University, Halifax, Canada, August 11-15, 1986. The Workshop was attended by thirty-six scientists from eleven NATO countries. Thirteen invited lectures and twenty-two contributed lectures were presented, of which twenty-five appe
34#
發(fā)表于 2025-3-27 10:48:21 | 只看該作者
The Convergence of Noninterpolatory Product Integration Rulesn generalized piecewise polynomial interpolation. The second concerns rules involving modified moments for which there is a double limit process. First, convergence of an iterated limit is proved under assumptions similar to those required for polynomial product integration. Then, convergence of the
35#
發(fā)表于 2025-3-27 14:19:53 | 只看該作者
36#
發(fā)表于 2025-3-27 19:24:41 | 只看該作者
37#
發(fā)表于 2025-3-28 00:27:48 | 只看該作者
Quadrature Methods for the Determination of Zeros of Transcendental Functions - A Reviewre based on the classical theory of analytic functions, but, recently, relevant methods based on the elementary theory of real functions were also developed. On the other hand, purely numerical methods were also recently proposed. The common point of these methods is the use of numerical integration
38#
發(fā)表于 2025-3-28 02:45:58 | 只看該作者
39#
發(fā)表于 2025-3-28 07:46:05 | 只看該作者
40#
發(fā)表于 2025-3-28 11:50:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 21:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀远县| 黔西县| 临洮县| 永顺县| 金沙县| 方城县| 清流县| 朝阳区| 黄陵县| 建宁县| 喀什市| 博爱县| 延安市| 抚顺县| 沙坪坝区| 凤翔县| 昭苏县| 滁州市| 古蔺县| 张北县| 沁阳市| 常宁市| 达日县| 侯马市| 江西省| 富顺县| 白朗县| 临洮县| 化隆| 扎兰屯市| 仁寿县| 遵义市| 府谷县| 彰化县| 手游| 务川| 夏河县| 丹凤县| 长宁县| 澄城县| 开江县|