找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory – Diophantine Problems, Uniform Distribution and Applications; Festschrift in Honou Christian Elsholtz,Peter Grabner Book 201

[復制鏈接]
樓主: Jejunum
61#
發(fā)表于 2025-4-1 05:46:51 | 只看該作者
62#
發(fā)表于 2025-4-1 06:34:29 | 只看該作者
63#
發(fā)表于 2025-4-1 13:29:05 | 只看該作者
Book 2017oblems, asymptotic counting, uniform distribution and discrepancy of sequences (in theory and application), dynamical systems, prime numbers, and actuarial mathematics. Offering valuable insights into recent developments in these areas, the book will be of interest to researchers and graduate students engaged in number theory and its applications.
64#
發(fā)表于 2025-4-1 16:44:12 | 只看該作者
and application), dynamical systems, prime numbers, and actuarial mathematics. Offering valuable insights into recent developments in these areas, the book will be of interest to researchers and graduate students engaged in number theory and its applications.978-3-319-85637-7978-3-319-55357-3
65#
發(fā)表于 2025-4-1 22:03:46 | 只看該作者
On Nearly Linear Recurrence Sequences, On the other hand, we show under certain hypotheses that though there may be infinitely many of them, the common terms of two nlrs are very sparse. The proof of this result combines our Binet-type formula with a Baker type estimate for logarithmic forms.
66#
發(fā)表于 2025-4-2 00:51:57 | 只看該作者
A Discrepancy Problem: Balancing Infinite Dimensional Vectors,ult about arithmetic progressions from a very general vector balancing result. It is about balancing infinite dimensional vectors in the maximum norm, and it is interesting in its own right (possibly, more interesting than the special case above).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
中方县| 江陵县| 万宁市| 仙游县| 临潭县| 邻水| 武平县| 西充县| 灵台县| 遂川县| 界首市| 壶关县| 武义县| 栾城县| 靖边县| 霍邱县| 香港| 武川县| 米林县| 如东县| 江阴市| 根河市| 阜新市| 突泉县| 彭山县| 临澧县| 岢岚县| 烟台市| 当雄县| 育儿| 全椒县| 莎车县| 卫辉市| 德庆县| 滦南县| 恭城| 上杭县| 双江| 青海省| 镇远县| 安岳县|