找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory – Diophantine Problems, Uniform Distribution and Applications; Festschrift in Honou Christian Elsholtz,Peter Grabner Book 201

[復(fù)制鏈接]
查看: 49642|回復(fù): 65
樓主
發(fā)表于 2025-3-21 19:43:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Number Theory – Diophantine Problems, Uniform Distribution and Applications
副標(biāo)題Festschrift in Honou
編輯Christian Elsholtz,Peter Grabner
視頻videohttp://file.papertrans.cn/669/668890/668890.mp4
概述Presents recent research in the area of diophantine number theory and uniform distribution.Contains papers written by leading authorities in their field.Dedicated to Robert F. Tichy on the occasion of
圖書(shū)封面Titlebook: Number Theory – Diophantine Problems, Uniform Distribution and Applications; Festschrift in Honou Christian Elsholtz,Peter Grabner Book 201
描述This volume is dedicated to Robert F. Tichy on the occasion of his 60th birthday. Presenting 22 research and survey papers written by leading experts in their respective fields, it focuses on areas that align with Tichy’s research interests and which he significantly shaped, including Diophantine problems, asymptotic counting, uniform distribution and discrepancy of sequences (in theory and application), dynamical systems, prime numbers, and actuarial mathematics. Offering valuable insights into recent developments in these areas, the book will be of interest to researchers and graduate students engaged in number theory and its applications.
出版日期Book 2017
關(guān)鍵詞diophantine equations; uniform distribution of sequences and discrepancy; digit representation of inte
版次1
doihttps://doi.org/10.1007/978-3-319-55357-3
isbn_softcover978-3-319-85637-7
isbn_ebook978-3-319-55357-3
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書(shū)目名稱Number Theory – Diophantine Problems, Uniform Distribution and Applications影響因子(影響力)




書(shū)目名稱Number Theory – Diophantine Problems, Uniform Distribution and Applications影響因子(影響力)學(xué)科排名




書(shū)目名稱Number Theory – Diophantine Problems, Uniform Distribution and Applications網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Number Theory – Diophantine Problems, Uniform Distribution and Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Number Theory – Diophantine Problems, Uniform Distribution and Applications被引頻次




書(shū)目名稱Number Theory – Diophantine Problems, Uniform Distribution and Applications被引頻次學(xué)科排名




書(shū)目名稱Number Theory – Diophantine Problems, Uniform Distribution and Applications年度引用




書(shū)目名稱Number Theory – Diophantine Problems, Uniform Distribution and Applications年度引用學(xué)科排名




書(shū)目名稱Number Theory – Diophantine Problems, Uniform Distribution and Applications讀者反饋




書(shū)目名稱Number Theory – Diophantine Problems, Uniform Distribution and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:09:38 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:45:27 | 只看該作者
A Discrepancy Problem: Balancing Infinite Dimensional Vectors,ously for all integers . ≥ 1, every (finite) arithmetic progression of difference . has discrepancy ..(.) ≤ .., independently of the starting point and the length of the arithmetic progression. Formally, for every . > 0 there exists a function . such that . for all sufficiently large . ≥ ..(.). This
地板
發(fā)表于 2025-3-22 08:22:30 | 只看該作者
Squares with Three Nonzero Digits,uations of the shape . where . is an odd prime, . > . > 0 and ..,?| . |,?. < ., either arise from “obvious” polynomial families or satisfy . ≤ 3. Our arguments rely upon Padé approximants to the binomial function, considered .-adically.
5#
發(fā)表于 2025-3-22 10:04:45 | 只看該作者
6#
發(fā)表于 2025-3-22 16:22:04 | 只看該作者
Diversity in Parametric Families of Number Fields, Dvornicich and Zannier implies that, for large ., among the number fields . there are at least .∕ log. distinct; here, . > 0 depends only on the degree . and the genus . = .(.). We prove that there are at least .∕(log.). distinct fields, where . > 0 depends only on . and ..
7#
發(fā)表于 2025-3-22 17:59:09 | 只看該作者
,On the Discrepancy of Halton–Kronecker Sequences,t for . algebraic we have . for all . > 0. On the other hand, we show that for . with bounded continued fraction coefficients we have . which is (almost) optimal since there exist . with bounded continued fraction coefficients such that ..
8#
發(fā)表于 2025-3-23 00:07:08 | 只看該作者
More on Diophantine Sextuples,rational Diophantine quadruple was found by Diophantus, while Euler proved that there are infinitely many rational Diophantine quintuples. In 1999, Gibbs found the first example of a rational Diophantine sextuple, and Dujella, Kazalicki, Miki? and Szikszai recently proved that there exist infinitely
9#
發(fā)表于 2025-3-23 02:02:37 | 只看該作者
10#
發(fā)表于 2025-3-23 06:18:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴林左旗| 安龙县| 师宗县| 扎鲁特旗| 从化市| 巢湖市| 溧阳市| 武胜县| 金昌市| 土默特右旗| 周口市| 平乡县| 普兰店市| 松阳县| 嵊泗县| 菏泽市| 远安县| 岑溪市| 酉阳| 永春县| 武宁县| 乌拉特中旗| 红安县| 宁海县| 浦江县| 长治市| 黔西| 宁阳县| 调兵山市| 沙坪坝区| 漳平市| 红河县| 徐州市| 都匀市| 吉安县| 珠海市| 桂平市| 大方县| 山西省| 无锡市| 黔江区|