找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory – Diophantine Problems, Uniform Distribution and Applications; Festschrift in Honou Christian Elsholtz,Peter Grabner Book 201

[復(fù)制鏈接]
查看: 49637|回復(fù): 65
樓主
發(fā)表于 2025-3-21 19:43:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Number Theory – Diophantine Problems, Uniform Distribution and Applications
副標(biāo)題Festschrift in Honou
編輯Christian Elsholtz,Peter Grabner
視頻videohttp://file.papertrans.cn/669/668890/668890.mp4
概述Presents recent research in the area of diophantine number theory and uniform distribution.Contains papers written by leading authorities in their field.Dedicated to Robert F. Tichy on the occasion of
圖書(shū)封面Titlebook: Number Theory – Diophantine Problems, Uniform Distribution and Applications; Festschrift in Honou Christian Elsholtz,Peter Grabner Book 201
描述This volume is dedicated to Robert F. Tichy on the occasion of his 60th birthday. Presenting 22 research and survey papers written by leading experts in their respective fields, it focuses on areas that align with Tichy’s research interests and which he significantly shaped, including Diophantine problems, asymptotic counting, uniform distribution and discrepancy of sequences (in theory and application), dynamical systems, prime numbers, and actuarial mathematics. Offering valuable insights into recent developments in these areas, the book will be of interest to researchers and graduate students engaged in number theory and its applications.
出版日期Book 2017
關(guān)鍵詞diophantine equations; uniform distribution of sequences and discrepancy; digit representation of inte
版次1
doihttps://doi.org/10.1007/978-3-319-55357-3
isbn_softcover978-3-319-85637-7
isbn_ebook978-3-319-55357-3
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書(shū)目名稱(chēng)Number Theory – Diophantine Problems, Uniform Distribution and Applications影響因子(影響力)




書(shū)目名稱(chēng)Number Theory – Diophantine Problems, Uniform Distribution and Applications影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Number Theory – Diophantine Problems, Uniform Distribution and Applications網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Number Theory – Diophantine Problems, Uniform Distribution and Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Number Theory – Diophantine Problems, Uniform Distribution and Applications被引頻次




書(shū)目名稱(chēng)Number Theory – Diophantine Problems, Uniform Distribution and Applications被引頻次學(xué)科排名




書(shū)目名稱(chēng)Number Theory – Diophantine Problems, Uniform Distribution and Applications年度引用




書(shū)目名稱(chēng)Number Theory – Diophantine Problems, Uniform Distribution and Applications年度引用學(xué)科排名




書(shū)目名稱(chēng)Number Theory – Diophantine Problems, Uniform Distribution and Applications讀者反饋




書(shū)目名稱(chēng)Number Theory – Diophantine Problems, Uniform Distribution and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:09:38 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:45:27 | 只看該作者
A Discrepancy Problem: Balancing Infinite Dimensional Vectors,ously for all integers . ≥ 1, every (finite) arithmetic progression of difference . has discrepancy ..(.) ≤ .., independently of the starting point and the length of the arithmetic progression. Formally, for every . > 0 there exists a function . such that . for all sufficiently large . ≥ ..(.). This
地板
發(fā)表于 2025-3-22 08:22:30 | 只看該作者
Squares with Three Nonzero Digits,uations of the shape . where . is an odd prime, . > . > 0 and ..,?| . |,?. < ., either arise from “obvious” polynomial families or satisfy . ≤ 3. Our arguments rely upon Padé approximants to the binomial function, considered .-adically.
5#
發(fā)表于 2025-3-22 10:04:45 | 只看該作者
6#
發(fā)表于 2025-3-22 16:22:04 | 只看該作者
Diversity in Parametric Families of Number Fields, Dvornicich and Zannier implies that, for large ., among the number fields . there are at least .∕ log. distinct; here, . > 0 depends only on the degree . and the genus . = .(.). We prove that there are at least .∕(log.). distinct fields, where . > 0 depends only on . and ..
7#
發(fā)表于 2025-3-22 17:59:09 | 只看該作者
,On the Discrepancy of Halton–Kronecker Sequences,t for . algebraic we have . for all . > 0. On the other hand, we show that for . with bounded continued fraction coefficients we have . which is (almost) optimal since there exist . with bounded continued fraction coefficients such that ..
8#
發(fā)表于 2025-3-23 00:07:08 | 只看該作者
More on Diophantine Sextuples,rational Diophantine quadruple was found by Diophantus, while Euler proved that there are infinitely many rational Diophantine quintuples. In 1999, Gibbs found the first example of a rational Diophantine sextuple, and Dujella, Kazalicki, Miki? and Szikszai recently proved that there exist infinitely
9#
發(fā)表于 2025-3-23 02:02:37 | 只看該作者
10#
發(fā)表于 2025-3-23 06:18:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 19:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淳化县| 修水县| 颍上县| 镇沅| 祁东县| 龙江县| 沽源县| 易门县| 潼关县| 吴桥县| 伽师县| 镇原县| 武定县| 醴陵市| 平原县| 原平市| 巧家县| 集贤县| 德格县| 平果县| 黄梅县| 肃宁县| 定南县| 阿拉尔市| 子洲县| 永川市| 临沭县| 靖州| 黄冈市| 铁岭县| 西充县| 长海县| 尖扎县| 临汾市| 京山县| 宝鸡市| 深泽县| 确山县| 山阴县| 济源市| 咸宁市|