找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory in Function Fields; Michael Rosen Textbook 2002 Springer Science+Business Media New York 2002 Algebraic Function Fields.Alge

[復(fù)制鏈接]
樓主: 游牧
41#
發(fā)表于 2025-3-28 14:55:16 | 只看該作者
42#
發(fā)表于 2025-3-28 19:05:58 | 只看該作者
43#
發(fā)表于 2025-3-29 01:04:35 | 只看該作者
Dirichlet L-Series and Primes in an Arithmetic Progression,k on his thesis, but before writing it up, Kornblum enlisted in the army. He died in the fighting on the Eastern Front. After the war, Landau completed the sad duty of writing up and publishing his student’s results, see Kornblum [1].
44#
發(fā)表于 2025-3-29 05:57:53 | 只看該作者
Constant Field Extensions,rselves to the special case where . is algebraic, which is substantially easier and which will suffice for most of the applications we have in mind. However, the general case is both interesting and important. Expositions of the general case can be found in Chevalley [1] and Deuring [1].
45#
發(fā)表于 2025-3-29 09:22:22 | 只看該作者
46#
發(fā)表于 2025-3-29 14:15:56 | 只看該作者
47#
發(fā)表于 2025-3-29 18:05:53 | 只看該作者
Weil Differentials and the Canonical Class,t results: the strong approximation theorem and the Riemann-Hurwitz formula. The first of these will be proven in this chapter, the second in Chapter 7, where we will also prove the ABC conjecture in function fields and give some of its applications.
48#
發(fā)表于 2025-3-29 20:44:38 | 只看該作者
49#
發(fā)表于 2025-3-30 00:32:18 | 只看該作者
The Brumer-Stark Conjecture,roduced in Chapter 12. We will do so by using a method of B. Gross which combines the approaches of Tate and Hayes as they apply in this relatively simple special case. The use of 1-motives, which is essential in Deligne’s work, will not be needed here.
50#
發(fā)表于 2025-3-30 05:25:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
烟台市| 宁陵县| 从化市| 肃北| 淮安市| 浏阳市| 辽宁省| 酒泉市| 军事| 襄垣县| 疏附县| 阿图什市| 宜兰市| 马龙县| 龙川县| 普兰店市| 建湖县| 盐亭县| 京山县| 吉木萨尔县| 四会市| 墨江| 临颍县| 荃湾区| 赞皇县| 平江县| 长治市| 上高县| 沙坪坝区| 涿州市| 开化县| 十堰市| 永登县| 石林| 越西县| 板桥市| 西藏| 福贡县| 韩城市| 大埔区| 南郑县|