找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory in Function Fields; Michael Rosen Textbook 2002 Springer Science+Business Media New York 2002 Algebraic Function Fields.Alge

[復(fù)制鏈接]
查看: 39355|回復(fù): 57
樓主
發(fā)表于 2025-3-21 18:09:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Number Theory in Function Fields
編輯Michael Rosen
視頻videohttp://file.papertrans.cn/669/668882/668882.mp4
概述Includes supplementary material:
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Number Theory in Function Fields;  Michael Rosen Textbook 2002 Springer Science+Business Media New York 2002 Algebraic Function Fields.Alge
描述Elementary number theory is concerned with the arithmetic properties of the ring of integers, Z, and its field of fractions, the rational numbers, Q. Early on in the development of the subject it was noticed that Z has many properties in common with A = IF[T], the ring of polynomials over a finite field. Both rings are principal ideal domains, both have the property that the residue class ring of any non-zero ideal is finite, both rings have infinitely many prime elements, and both rings have finitely many units. Thus, one is led to suspect that many results which hold for Z have analogues of the ring A. This is indeed the case. The first four chapters of this book are devoted to illustrating this by presenting, for example, analogues of the little theorems of Fermat and Euler, Wilson‘s theorem, quadratic (and higher) reciprocity, the prime number theorem, and Dirichlet‘s theorem on primes in an arithmetic progression. All these results have been known for a long time, but it is hard to locate any exposition of them outside of the original papers. Algebraic number theory arises from elementary number theory by con- sidering finite algebraic extensions K of Q, which are called algeb
出版日期Textbook 2002
關(guān)鍵詞Algebraic Function Fields; Algebraic Geometry; Function Fields; Number theory; Prime; Prime number; finite
版次1
doihttps://doi.org/10.1007/978-1-4757-6046-0
isbn_softcover978-1-4419-2954-9
isbn_ebook978-1-4757-6046-0Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

書目名稱Number Theory in Function Fields影響因子(影響力)




書目名稱Number Theory in Function Fields影響因子(影響力)學(xué)科排名




書目名稱Number Theory in Function Fields網(wǎng)絡(luò)公開(kāi)度




書目名稱Number Theory in Function Fields網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Number Theory in Function Fields被引頻次




書目名稱Number Theory in Function Fields被引頻次學(xué)科排名




書目名稱Number Theory in Function Fields年度引用




書目名稱Number Theory in Function Fields年度引用學(xué)科排名




書目名稱Number Theory in Function Fields讀者反饋




書目名稱Number Theory in Function Fields讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:00:38 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:35:09 | 只看該作者
地板
發(fā)表于 2025-3-22 06:40:19 | 只看該作者
,Galois Extensions — Hecke and Artin L-Series,In Chapters 7 and 8 we discussed finite extensions . of algebraic function fields. We propose to continue that discussion here under the special assumption that the extension . is Galois. To simplify the discussion we continue to assume that the constant field . of . is perfect.
5#
發(fā)表于 2025-3-22 12:38:21 | 只看該作者
6#
發(fā)表于 2025-3-22 14:39:10 | 只看該作者
7#
發(fā)表于 2025-3-22 19:03:42 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/n/image/668882.jpg
8#
發(fā)表于 2025-3-22 22:07:33 | 只看該作者
9#
發(fā)表于 2025-3-23 04:09:40 | 只看該作者
10#
發(fā)表于 2025-3-23 09:10:31 | 只看該作者
Extensions of Function Fields, Riemann-Hurwitz, and the ABC Theorem,be presented in a geometric fashion. Function fields correspond to algebraic curves and finite extensions of function fields correspond to ramified covers of curves. In this chapter, however, we will continue to use a more arithmetic point of view which emphasizes the analogy of function fields with algebraic number fields.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威信县| 杂多县| 若羌县| 广元市| 太保市| 景德镇市| 宁海县| 蛟河市| 通城县| 通江县| 岳池县| 平利县| 迁安市| 大同市| 恭城| 昭通市| 竹山县| 葫芦岛市| 宝清县| 和田县| 曲靖市| 安顺市| 九江市| 徐水县| 广东省| 定州市| 淮阳县| 台南县| 门源| 鱼台县| 尼玛县| 南投市| 正镶白旗| 宾阳县| 南木林县| 酒泉市| 大石桥市| 浙江省| 东明县| 夏邑县| 阿拉尔市|