找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory and Related Fields; In Memory of Alf van Jonathan M. Borwein,Igor Shparlinski,Wadim Zudilin Conference proceedings 2013 Sprin

[復(fù)制鏈接]
樓主: Cleveland
31#
發(fā)表于 2025-3-26 21:25:45 | 只看該作者
32#
發(fā)表于 2025-3-27 05:04:42 | 只看該作者
33#
發(fā)表于 2025-3-27 07:08:29 | 只看該作者
,Life and Mathematics of Alfred Jacobus van der Poorten (1942–2010),r the rest of his life but travelled overseas for professional reasons several times a year from 1975 onwards. Alf was famous for his research in number theory and for his extensive contributions to the mathematics profession both in Australia and overseas..The scientific work of Alf van der Poorten
34#
發(fā)表于 2025-3-27 11:56:47 | 只看該作者
,Ramanujan–Sato-Like Series,complex plane. Then we use these .-functions together with a conjecture to find new examples of series of non-hypergeometric type. To motivate our theory we begin with the simpler case of Ramanujan–Sato series for 1∕..
35#
發(fā)表于 2025-3-27 16:17:17 | 只看該作者
On the Sign of the Real Part of the Riemann Zeta Function,sities related to the argument and to the real part of the zeta function on such lines. Using classical results of Bohr and Jessen, we obtain an explicit expression for the characteristic function associated with the argument. We give explicit expressions for the densities in terms of this character
36#
發(fā)表于 2025-3-27 17:47:27 | 只看該作者
,Additive Combinatorics: With a View Towards Computer Science and Cryptography—An Exposition,ause of a blend of ideas and techniques from several seemingly unrelated contexts which are used there. One might say that additive combinatorics is a branch of mathematics concerning the study of combinatorial properties of algebraic objects, for instance, Abelian groups, rings, or fields. This eme
37#
發(fā)表于 2025-3-28 00:22:35 | 只看該作者
38#
發(fā)表于 2025-3-28 03:08:34 | 只看該作者
39#
發(fā)表于 2025-3-28 06:49:09 | 只看該作者
Continued Fractions and Dedekind Sums for Function Fields,continued fractions, Hickerson answered these questions affirmatively. In function fields, there exists a Dedekind sum .(., .) (see Sect. 4) similar to .(., .). Using continued fractions, we answer the analogous problems for .(., .).
40#
發(fā)表于 2025-3-28 12:54:48 | 只看該作者
Consequences of a Factorization Theorem for Generalized Exponential Polynomials with Infinitely Manfinitely many integer zeros of a generalized exponential polynomial form a finite union of arithmetic progressions. The second shows how to construct classes of transcendentally transcendental power series having the property that the index set of its zero coefficients is a finite union of arithmeti
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
达日县| 东兰县| 和顺县| 赞皇县| 左权县| 子洲县| 梧州市| 浑源县| 洪江市| 南和县| 宁德市| 阜南县| 昔阳县| 洪泽县| 彰化县| 西畴县| 蕲春县| 玛多县| 中超| 宜城市| 巍山| 全南县| 莎车县| 监利县| 平阴县| 延安市| 仪征市| 璧山县| 招远市| 东宁县| 曲麻莱县| 淅川县| 仁化县| 唐山市| 探索| 台南市| 兴义市| 沿河| 上杭县| 三明市| 固原市|