找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory and Related Fields; In Memory of Alf van Jonathan M. Borwein,Igor Shparlinski,Wadim Zudilin Conference proceedings 2013 Sprin

[復(fù)制鏈接]
樓主: Cleveland
21#
發(fā)表于 2025-3-25 07:22:49 | 只看該作者
Continued Fractions and Dedekind Sums for Function Fields,continued fractions, Hickerson answered these questions affirmatively. In function fields, there exists a Dedekind sum .(., .) (see Sect. 4) similar to .(., .). Using continued fractions, we answer the analogous problems for .(., .).
22#
發(fā)表于 2025-3-25 10:40:09 | 只看該作者
23#
發(fā)表于 2025-3-25 15:21:57 | 只看該作者
24#
發(fā)表于 2025-3-25 16:11:53 | 只看該作者
25#
發(fā)表于 2025-3-26 00:00:00 | 只看該作者
Some Notes on Weighted Sum Formulae for Double Zeta Values, to new evaluations of sums involving the harmonic numbers, the alternating double zeta values, and the Mordell–Tornheim double sum. We discuss a heuristic for finding or dismissing the existence of similar simple sums. We also produce some new sums from recursions involving the Riemann zeta and the Dirichlet beta functions.
26#
發(fā)表于 2025-3-26 04:04:06 | 只看該作者
27#
發(fā)表于 2025-3-26 06:14:39 | 只看該作者
28#
發(fā)表于 2025-3-26 08:57:35 | 只看該作者
,Burgess’s Bounds for Character Sums,Let . be a character sum to modulus .. Then the standard Burgess bound takes the form ., where .. We show that . for any positive integers .. ≤ . spaced at least . apart, so that even reducing to a single term of the sum recovers the Burgess estimate.
29#
發(fā)表于 2025-3-26 13:35:05 | 只看該作者
30#
發(fā)表于 2025-3-26 18:44:21 | 只看該作者
Families of Cubic Thue Equations with Effective Bounds for the Solutions,To each nontotally real cubic extension . of . and to each generator . of the cubic field ., we attach a family of cubic Thue equations, indexed by the units of ., and we prove that this family of cubic Thue equations has only a finite number of integer solutions, by giving an effective upper bound for these solutions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
古丈县| 灵丘县| 高邑县| 衡山县| 民和| 南通市| 江达县| 北辰区| 甘肃省| 苍山县| 新巴尔虎右旗| 涞水县| 卢氏县| 沙河市| 同仁县| 上栗县| 林芝县| 柳河县| 增城市| 乌鲁木齐县| 巴林右旗| 卫辉市| 靖边县| 喀喇沁旗| 新建县| 永胜县| 兰州市| 手游| 衡水市| 宁武县| 克东县| 西平县| 尉氏县| 南陵县| 华安县| 昌平区| 太白县| 南漳县| 和龙市| 梅河口市| 宕昌县|