找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Normally Hyperbolic Invariant Manifolds in Dynamical Systems; Stephen Wiggins Textbook 1994 Springer Science+Business Media New York 1994

[復制鏈接]
查看: 27265|回復: 39
樓主
發(fā)表于 2025-3-21 17:31:49 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems
編輯Stephen Wiggins
視頻videohttp://file.papertrans.cn/669/668078/668078.mp4
叢書名稱Applied Mathematical Sciences
圖書封面Titlebook: Normally Hyperbolic Invariant Manifolds in Dynamical Systems;  Stephen Wiggins Textbook 1994 Springer Science+Business Media New York 1994
描述In the past ten years, there has been much progress in understanding the global dynamics of systems with several degrees-of-freedom. An important tool in these studies has been the theory of normally hyperbolic invariant manifolds and foliations of normally hyperbolic invariant manifolds. In recent years these techniques have been used for the development of global perturbation methods, the study of resonance phenomena in coupled oscillators, geometric singular perturbation theory, and the study of bursting phenomena in biological oscillators. "Invariant manifold theorems" have become standard tools for applied mathematicians, physicists, engineers, and virtually anyone working on nonlinear problems from a geometric viewpoint. In this book, the author gives a self-contained development of these ideas as well as proofs of the main theorems along the lines of the seminal works of Fenichel. In general, the Fenichel theory is very valuable for many applications, but it is not easy for people to get into from existing literature. This book provides an excellent avenue to that. Wiggins also describes a variety of settings where these techniques can be used in applications.
出版日期Textbook 1994
關鍵詞dynamical systems; dynamics; manifold
版次1
doihttps://doi.org/10.1007/978-1-4612-4312-0
isbn_softcover978-1-4612-8734-6
isbn_ebook978-1-4612-4312-0Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer Science+Business Media New York 1994
The information of publication is updating

書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems影響因子(影響力)




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems影響因子(影響力)學科排名




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems網(wǎng)絡公開度




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems網(wǎng)絡公開度學科排名




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems被引頻次




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems被引頻次學科排名




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems年度引用




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems年度引用學科排名




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems讀者反饋




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:01:48 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:15:45 | 只看該作者
0066-5452 rtant tool in these studies has been the theory of normally hyperbolic invariant manifolds and foliations of normally hyperbolic invariant manifolds. In recent years these techniques have been used for the development of global perturbation methods, the study of resonance phenomena in coupled oscill
地板
發(fā)表于 2025-3-22 06:20:19 | 只看該作者
The Unstable Manifold of an Overflowing Invariant Manifold,he unstable manifold of .. Afterward, we will show that this unstable manifold also satisfies the hypotheses of the persistence theorem for overflowing invariant manifolds. Hence, . will also have an unstable manifold under appropriate hypotheses. We begin developing the setting in much the same way as earlier.
5#
發(fā)表于 2025-3-22 09:38:02 | 只看該作者
6#
發(fā)表于 2025-3-22 14:36:22 | 只看該作者
https://doi.org/10.1007/978-1-4612-4312-0dynamical systems; dynamics; manifold
7#
發(fā)表于 2025-3-22 18:49:07 | 只看該作者
8#
發(fā)表于 2025-3-22 22:52:06 | 只看該作者
9#
發(fā)表于 2025-3-23 04:49:24 | 只看該作者
Examples,In this chapter we collect together several examples that illustrate the use and range of the theory developed in the previous chapters.
10#
發(fā)表于 2025-3-23 06:31:19 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
海淀区| 大渡口区| 兴仁县| 中超| 苏尼特右旗| 宝山区| 满洲里市| 驻马店市| 株洲市| 沙田区| 辽宁省| 商城县| 井陉县| 庆阳市| 讷河市| 简阳市| 忻州市| 凤城市| 花垣县| 松阳县| 汉源县| 富平县| 永德县| 治县。| 鹤岗市| 虞城县| 武安市| 河池市| 霍林郭勒市| 镇平县| 棋牌| 河间市| 河东区| 平乡县| 安乡县| 长宁区| 江口县| 红安县| 娱乐| 会同县| 罗平县|