找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Normally Hyperbolic Invariant Manifolds in Dynamical Systems; Stephen Wiggins Textbook 1994 Springer Science+Business Media New York 1994

[復(fù)制鏈接]
查看: 27266|回復(fù): 39
樓主
發(fā)表于 2025-3-21 17:31:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems
編輯Stephen Wiggins
視頻videohttp://file.papertrans.cn/669/668078/668078.mp4
叢書名稱Applied Mathematical Sciences
圖書封面Titlebook: Normally Hyperbolic Invariant Manifolds in Dynamical Systems;  Stephen Wiggins Textbook 1994 Springer Science+Business Media New York 1994
描述In the past ten years, there has been much progress in understanding the global dynamics of systems with several degrees-of-freedom. An important tool in these studies has been the theory of normally hyperbolic invariant manifolds and foliations of normally hyperbolic invariant manifolds. In recent years these techniques have been used for the development of global perturbation methods, the study of resonance phenomena in coupled oscillators, geometric singular perturbation theory, and the study of bursting phenomena in biological oscillators. "Invariant manifold theorems" have become standard tools for applied mathematicians, physicists, engineers, and virtually anyone working on nonlinear problems from a geometric viewpoint. In this book, the author gives a self-contained development of these ideas as well as proofs of the main theorems along the lines of the seminal works of Fenichel. In general, the Fenichel theory is very valuable for many applications, but it is not easy for people to get into from existing literature. This book provides an excellent avenue to that. Wiggins also describes a variety of settings where these techniques can be used in applications.
出版日期Textbook 1994
關(guān)鍵詞dynamical systems; dynamics; manifold
版次1
doihttps://doi.org/10.1007/978-1-4612-4312-0
isbn_softcover978-1-4612-8734-6
isbn_ebook978-1-4612-4312-0Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer Science+Business Media New York 1994
The information of publication is updating

書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems影響因子(影響力)




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems影響因子(影響力)學(xué)科排名




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems網(wǎng)絡(luò)公開度




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems被引頻次




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems被引頻次學(xué)科排名




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems年度引用




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems年度引用學(xué)科排名




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems讀者反饋




書目名稱Normally Hyperbolic Invariant Manifolds in Dynamical Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:01:48 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:15:45 | 只看該作者
0066-5452 rtant tool in these studies has been the theory of normally hyperbolic invariant manifolds and foliations of normally hyperbolic invariant manifolds. In recent years these techniques have been used for the development of global perturbation methods, the study of resonance phenomena in coupled oscill
地板
發(fā)表于 2025-3-22 06:20:19 | 只看該作者
The Unstable Manifold of an Overflowing Invariant Manifold,he unstable manifold of .. Afterward, we will show that this unstable manifold also satisfies the hypotheses of the persistence theorem for overflowing invariant manifolds. Hence, . will also have an unstable manifold under appropriate hypotheses. We begin developing the setting in much the same way as earlier.
5#
發(fā)表于 2025-3-22 09:38:02 | 只看該作者
6#
發(fā)表于 2025-3-22 14:36:22 | 只看該作者
https://doi.org/10.1007/978-1-4612-4312-0dynamical systems; dynamics; manifold
7#
發(fā)表于 2025-3-22 18:49:07 | 只看該作者
8#
發(fā)表于 2025-3-22 22:52:06 | 只看該作者
9#
發(fā)表于 2025-3-23 04:49:24 | 只看該作者
Examples,In this chapter we collect together several examples that illustrate the use and range of the theory developed in the previous chapters.
10#
發(fā)表于 2025-3-23 06:31:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 18:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉善左旗| 观塘区| 长垣县| 东安县| 奇台县| 吉林省| 沂源县| 革吉县| 台北市| 普宁市| 营口市| 儋州市| 乐清市| 汝阳县| 庐江县| 孝义市| 天柱县| 竹山县| 含山县| 江达县| 海盐县| 陵水| 靖边县| 磐安县| 平和县| 石楼县| 运城市| 高邮市| 五台县| 马尔康县| 宝丰县| 凤凰县| 南木林县| 滦南县| 保定市| 桦南县| 吉林省| 承德市| 牙克石市| 新巴尔虎左旗| 九龙县|