找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Normalization Techniques in Deep Learning; Lei Huang Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to

[復制鏈接]
查看: 24662|回復: 47
樓主
發(fā)表于 2025-3-21 19:11:20 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Normalization Techniques in Deep Learning
編輯Lei Huang
視頻videohttp://file.papertrans.cn/669/668075/668075.mp4
概述Presents valuable guidelines for selecting normalization techniques for use in training deep neural networks.Discusses the research landscape of normalization techniques and covers the needed methods,
叢書名稱Synthesis Lectures on Computer Vision
圖書封面Titlebook: Normalization Techniques in Deep Learning;  Lei Huang Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to
描述?This book presents and surveys normalization techniques with a deep analysis in training deep neural networks.? In addition, the author provides technical details in designing new normalization methods and network architectures tailored to specific tasks.? Normalization methods can improve the training stability, optimization efficiency, and generalization ability of deep neural networks (DNNs) and have become basic components in most state-of-the-art DNN architectures.? The author provides guidelines for elaborating, understanding, and applying normalization methods.? This book is ideal for readers working on the development of novel deep learning algorithms and/or their applications to solve practical problems in computer vision and machine learning tasks.? The book also serves as a resource researchers, engineers, and students who are new to the field and need to understand and train DNNs..
出版日期Book 2022
關鍵詞Computer Vision; Deep Neural Networks (DNNs); Normalization Techniques; Machine Learning; Artificial Int
版次1
doihttps://doi.org/10.1007/978-3-031-14595-7
isbn_softcover978-3-031-14597-1
isbn_ebook978-3-031-14595-7Series ISSN 2153-1056 Series E-ISSN 2153-1064
issn_series 2153-1056
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Normalization Techniques in Deep Learning影響因子(影響力)




書目名稱Normalization Techniques in Deep Learning影響因子(影響力)學科排名




書目名稱Normalization Techniques in Deep Learning網絡公開度




書目名稱Normalization Techniques in Deep Learning網絡公開度學科排名




書目名稱Normalization Techniques in Deep Learning被引頻次




書目名稱Normalization Techniques in Deep Learning被引頻次學科排名




書目名稱Normalization Techniques in Deep Learning年度引用




書目名稱Normalization Techniques in Deep Learning年度引用學科排名




書目名稱Normalization Techniques in Deep Learning讀者反饋




書目名稱Normalization Techniques in Deep Learning讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:36:53 | 只看該作者
,Motivation and?Overview of?Normalization in?DNNs,een examples will be dominated by these dimensions, which will impair the performance of the learner. Besides, normalizing an input can improve the optimization efficiency for parametric models. There exist theoretical advantages to normalization for linear models, as we will illustrate.
板凳
發(fā)表于 2025-3-22 03:11:20 | 只看該作者
,A General View of?Normalizing Activations,oduce the preliminary work of normalizing activations of DNNs, prior to the milestone normalization technique—batch normalization (BN)?[.]. We then illustrate the algorithm of BN and how it is developed by exploiting the merits of the previous methods.
地板
發(fā)表于 2025-3-22 07:07:09 | 只看該作者
,BN for?More Robust Estimation,ng along the batch dimension, as introduced in previous sections. Here, we will discuss the more robust estimation methods that also address this problem of BN. One way to reduce the discrepancy between training and inference is to combine the estimated population statistics for normalization during training.
5#
發(fā)表于 2025-3-22 11:57:51 | 只看該作者
6#
發(fā)表于 2025-3-22 15:30:38 | 只看該作者
7#
發(fā)表于 2025-3-22 20:25:14 | 只看該作者
,Summary and?Discussion,le to design new normalization methods tailored to specific tasks (by the choice of NAP) or improve the trade-off between efficiency and performance (by the choice of NOP). We leave the following open problems for discussion.
8#
發(fā)表于 2025-3-22 21:12:50 | 只看該作者
9#
發(fā)表于 2025-3-23 01:41:08 | 只看該作者
,Multi-mode and?Combinational Normalization, GMM distribution as: . where . represents .-th Gaussian in the mixture model .. It is possible to estimate the mixture coefficient . and further derive the soft-assignment mechanism ., by using the expectation-maximization (EM)?[.] algorithm.
10#
發(fā)表于 2025-3-23 07:56:56 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 17:53
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
同仁县| 麻栗坡县| 武宣县| 贵州省| 于田县| 嵊泗县| 平塘县| 盐边县| 开化县| 婺源县| 肇州县| 时尚| 财经| 南漳县| 正定县| 墨竹工卡县| 云霄县| 广宁县| 中江县| 衡水市| 清远市| 镇平县| 巨野县| 长岛县| 双城市| 霞浦县| 鹤峰县| 梅河口市| 平阴县| 土默特左旗| 昆山市| 阜城县| 诸暨市| 旬阳县| 揭阳市| 叶城县| 霍山县| 宾阳县| 封丘县| 牡丹江市| 新乡县|