找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Normalization Techniques in Deep Learning; Lei Huang Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to

[復(fù)制鏈接]
查看: 24666|回復(fù): 47
樓主
發(fā)表于 2025-3-21 19:11:20 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Normalization Techniques in Deep Learning
編輯Lei Huang
視頻videohttp://file.papertrans.cn/669/668075/668075.mp4
概述Presents valuable guidelines for selecting normalization techniques for use in training deep neural networks.Discusses the research landscape of normalization techniques and covers the needed methods,
叢書(shū)名稱Synthesis Lectures on Computer Vision
圖書(shū)封面Titlebook: Normalization Techniques in Deep Learning;  Lei Huang Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to
描述?This book presents and surveys normalization techniques with a deep analysis in training deep neural networks.? In addition, the author provides technical details in designing new normalization methods and network architectures tailored to specific tasks.? Normalization methods can improve the training stability, optimization efficiency, and generalization ability of deep neural networks (DNNs) and have become basic components in most state-of-the-art DNN architectures.? The author provides guidelines for elaborating, understanding, and applying normalization methods.? This book is ideal for readers working on the development of novel deep learning algorithms and/or their applications to solve practical problems in computer vision and machine learning tasks.? The book also serves as a resource researchers, engineers, and students who are new to the field and need to understand and train DNNs..
出版日期Book 2022
關(guān)鍵詞Computer Vision; Deep Neural Networks (DNNs); Normalization Techniques; Machine Learning; Artificial Int
版次1
doihttps://doi.org/10.1007/978-3-031-14595-7
isbn_softcover978-3-031-14597-1
isbn_ebook978-3-031-14595-7Series ISSN 2153-1056 Series E-ISSN 2153-1064
issn_series 2153-1056
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Normalization Techniques in Deep Learning影響因子(影響力)




書(shū)目名稱Normalization Techniques in Deep Learning影響因子(影響力)學(xué)科排名




書(shū)目名稱Normalization Techniques in Deep Learning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Normalization Techniques in Deep Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Normalization Techniques in Deep Learning被引頻次




書(shū)目名稱Normalization Techniques in Deep Learning被引頻次學(xué)科排名




書(shū)目名稱Normalization Techniques in Deep Learning年度引用




書(shū)目名稱Normalization Techniques in Deep Learning年度引用學(xué)科排名




書(shū)目名稱Normalization Techniques in Deep Learning讀者反饋




書(shū)目名稱Normalization Techniques in Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:36:53 | 只看該作者
,Motivation and?Overview of?Normalization in?DNNs,een examples will be dominated by these dimensions, which will impair the performance of the learner. Besides, normalizing an input can improve the optimization efficiency for parametric models. There exist theoretical advantages to normalization for linear models, as we will illustrate.
板凳
發(fā)表于 2025-3-22 03:11:20 | 只看該作者
,A General View of?Normalizing Activations,oduce the preliminary work of normalizing activations of DNNs, prior to the milestone normalization technique—batch normalization (BN)?[.]. We then illustrate the algorithm of BN and how it is developed by exploiting the merits of the previous methods.
地板
發(fā)表于 2025-3-22 07:07:09 | 只看該作者
,BN for?More Robust Estimation,ng along the batch dimension, as introduced in previous sections. Here, we will discuss the more robust estimation methods that also address this problem of BN. One way to reduce the discrepancy between training and inference is to combine the estimated population statistics for normalization during training.
5#
發(fā)表于 2025-3-22 11:57:51 | 只看該作者
6#
發(fā)表于 2025-3-22 15:30:38 | 只看該作者
7#
發(fā)表于 2025-3-22 20:25:14 | 只看該作者
,Summary and?Discussion,le to design new normalization methods tailored to specific tasks (by the choice of NAP) or improve the trade-off between efficiency and performance (by the choice of NOP). We leave the following open problems for discussion.
8#
發(fā)表于 2025-3-22 21:12:50 | 只看該作者
9#
發(fā)表于 2025-3-23 01:41:08 | 只看該作者
,Multi-mode and?Combinational Normalization, GMM distribution as: . where . represents .-th Gaussian in the mixture model .. It is possible to estimate the mixture coefficient . and further derive the soft-assignment mechanism ., by using the expectation-maximization (EM)?[.] algorithm.
10#
發(fā)表于 2025-3-23 07:56:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
方山县| 怀安县| 乌恰县| 共和县| 安陆市| 剑阁县| 长春市| 昂仁县| 塔河县| 和田县| 越西县| 襄城县| 昭觉县| 林周县| 防城港市| 本溪| 贞丰县| 浠水县| 霍邱县| 辛集市| 蒲城县| 博罗县| 永和县| 个旧市| 黄山市| 出国| 南漳县| 襄垣县| 六枝特区| 井冈山市| 梁河县| 章丘市| 邢台市| 普兰店市| 合肥市| 云和县| 衡水市| 隆化县| 铜川市| 达尔| 台江县|