找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Normal Surface Singularities; András Némethi Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springe

[復(fù)制鏈接]
樓主: ambulance
21#
發(fā)表于 2025-3-25 06:06:35 | 只看該作者
,Topological Invariants. The Seiberg–Witten Invariant,Conjecture), which relates the Seiberg-Witten invariant of the link to the (equivariant) geometric genus. We prove it for several cases (e.g., rational, weighted homogeneous, splice quotient germs), and we provide also counterexamples (certain superisolated germs).
22#
發(fā)表于 2025-3-25 11:13:35 | 只看該作者
23#
發(fā)表于 2025-3-25 15:35:50 | 只看該作者
24#
發(fā)表于 2025-3-25 18:12:37 | 只看該作者
25#
發(fā)表于 2025-3-25 23:19:06 | 只看該作者
26#
發(fā)表于 2025-3-26 01:17:56 | 只看該作者
0071-1136 ach with modern low-dimensional topology.Presents lattice coThis monograph provides a comprehensive introduction to the theory of complex normal surface singularities, with a special emphasis on connections to low-dimensional topology. In this way, it unites the analytic approach with the more recen
27#
發(fā)表于 2025-3-26 06:54:53 | 只看該作者
28#
發(fā)表于 2025-3-26 09:41:02 | 只看該作者
29#
發(fā)表于 2025-3-26 14:19:29 | 只看該作者
Examples,ice quotients. As the last family of germs, we consider singularities with non-degenerate Newton principal part. We discuss both the classical case of hypersurfaces and also the case of Weil divisors in affine toric singularities.
30#
發(fā)表于 2025-3-26 20:13:34 | 只看該作者
Invariants Associated with a Resolution,signature of Brieskorn and suspension hypersurface singularities. We also review some famous conjectures and open problems regarding hypersurface singularities. The last part reviews the theory of spin and spin. structures for manifolds of dimension 3 and 4.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 01:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿图什市| 攀枝花市| 阿鲁科尔沁旗| 普陀区| 广宁县| 商南县| 澄迈县| 建德市| 湟中县| 黄冈市| 新密市| 科尔| 梅河口市| 德惠市| 翼城县| 宣恩县| 齐河县| 仲巴县| 浑源县| 准格尔旗| 广南县| 玉山县| 出国| 婺源县| 潜江市| 玉环县| 望江县| 曲阜市| 吉木乃县| 墨江| 阳高县| 龙陵县| 本溪| 衡东县| 大丰市| 滕州市| 邢台县| 来宾市| 灵武市| 兰考县| 静安区|