找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Normal Surface Singularities; András Némethi Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springe

[復(fù)制鏈接]
查看: 6509|回復(fù): 49
樓主
發(fā)表于 2025-3-21 16:22:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Normal Surface Singularities
編輯András Némethi
視頻videohttp://file.papertrans.cn/669/668033/668033.mp4
概述Provides a self-contained presentation of analytic and topological invariants of surface singularities.Combines the classical analytic approach with modern low-dimensional topology.Presents lattice co
叢書名稱Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemati
圖書封面Titlebook: Normal Surface Singularities;  András Némethi Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springe
描述This monograph provides a comprehensive introduction to the theory of complex normal surface singularities, with a special emphasis on connections to low-dimensional topology. In this way, it unites the analytic approach with the more recent topological one, combining their tools and methods..In the first chapters, the book sets out the foundations of the theory of normal surface singularities. This includes a comprehensive presentation of the properties of the link (as an oriented 3-manifold) and of the invariants associated with a resolution, combined with the structure and special properties of the line bundles defined on a resolution. A recurring theme is the comparison of analytic and topological invariants. For example, the Poincaré series of the divisorial filtration is compared to a topological zeta function associated with the resolution graph, and the sheaf cohomologies of the line bundles are compared to the Seiberg–Witten invariants of the link. Equivariant Ehrhart theory is introduced to establish surgery-additivity formulae of these invariants, as well as for the regularization procedures of multivariable series..In addition to recent research, the book also provides
出版日期Book 2022
關(guān)鍵詞link of singularities; Artin-Laufer program; Seiberg-Witten invariant; Casson invariant; Casson-Walker i
版次1
doihttps://doi.org/10.1007/978-3-031-06753-2
isbn_ebook978-3-031-06753-2Series ISSN 0071-1136 Series E-ISSN 2197-5655
issn_series 0071-1136
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Normal Surface Singularities影響因子(影響力)




書目名稱Normal Surface Singularities影響因子(影響力)學(xué)科排名




書目名稱Normal Surface Singularities網(wǎng)絡(luò)公開度




書目名稱Normal Surface Singularities網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Normal Surface Singularities被引頻次




書目名稱Normal Surface Singularities被引頻次學(xué)科排名




書目名稱Normal Surface Singularities年度引用




書目名稱Normal Surface Singularities年度引用學(xué)科排名




書目名稱Normal Surface Singularities讀者反饋




書目名稱Normal Surface Singularities讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:21:05 | 只看該作者
The Link,variant: it characterizes the local germ topologically. This is guaranteed by the real cone structure of a complex analytic set near any given point. We represent the link as a plumber 3-manifold, for this we review the plumbing constructions and the calculus. Several properties of the fundamental g
板凳
發(fā)表于 2025-3-22 03:12:04 | 只看該作者
地板
發(fā)表于 2025-3-22 08:02:30 | 只看該作者
5#
發(fā)表于 2025-3-22 08:43:35 | 只看該作者
6#
發(fā)表于 2025-3-22 15:00:34 | 只看該作者
7#
發(fā)表于 2025-3-22 19:08:54 | 只看該作者
8#
發(fā)表于 2025-3-22 22:43:07 | 只看該作者
9#
發(fā)表于 2025-3-23 04:49:05 | 只看該作者
10#
發(fā)表于 2025-3-23 07:29:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
偏关县| 晋宁县| 七台河市| 兴业县| 庆安县| 德州市| 额敏县| 青浦区| 依安县| 鲁甸县| 庆城县| 桓仁| 德令哈市| 盘山县| 宁夏| 芮城县| 东辽县| 吴桥县| 新沂市| 波密县| 原阳县| 兴安县| 中阳县| 永年县| 张家界市| 安吉县| 景洪市| 盘山县| 增城市| 横山县| 若羌县| 宿松县| 琼结县| 虎林市| 乐业县| 沙洋县| 芒康县| 华亭县| 林甸县| 库伦旗| 额尔古纳市|