找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields; John Guckenheimer,Philip Holmes Book 1983 Springer Science+B

[復(fù)制鏈接]
樓主: 面臨
21#
發(fā)表于 2025-3-25 05:54:04 | 只看該作者
22#
發(fā)表于 2025-3-25 08:09:29 | 只看該作者
23#
發(fā)表于 2025-3-25 11:50:42 | 只看該作者
24#
發(fā)表于 2025-3-25 17:26:15 | 只看該作者
Introduction: Differential Equations and Dynamical Systems,w some of the better-known results on two-dimensional autonomous systems and end with a statement and sketch of the proof of Peixoto’s theorem, an important result which summarizes much of our knowledge of two-dimensional flows.
25#
發(fā)表于 2025-3-25 20:28:02 | 只看該作者
Local Bifurcations,ters 6 and 7, a systematic theory which describes and permits the analysis of the typical bifurcations one encounters. We pay careful attention to the examples introduced in Chapter 2 and use these to illustrate the theory that we present.
26#
發(fā)表于 2025-3-26 04:07:37 | 只看該作者
978-1-4612-7020-1Springer Science+Business Media New York 1983
27#
發(fā)表于 2025-3-26 08:10:18 | 只看該作者
28#
發(fā)表于 2025-3-26 08:42:04 | 只看該作者
John Guckenheimer,Philip HolmesIncludes supplementary material:
29#
發(fā)表于 2025-3-26 14:37:07 | 只看該作者
Global Bifurcations,In Chapter 3 we dealt with the local bifurcation properties of equilibrium points and periodic orbits. The theory developed there relied upon coordinate transformations which bring general systems into normal forms, from which dynamical information can be deduced from the Taylor series of a vector field or map at a single point.
30#
發(fā)表于 2025-3-26 18:44:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 21:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平利县| 资兴市| 澳门| 尚义县| 九龙县| 内乡县| 靖边县| 宜川县| 林西县| 承德市| 息烽县| 桓台县| 凤城市| 镇平县| 西青区| 肃北| 信阳市| 江华| 景洪市| 黄石市| 左贡县| 南京市| 城口县| 上虞市| 九江市| 巫溪县| 时尚| 定陶县| 大洼县| 云梦县| 南城县| 郴州市| 阜南县| 平远县| 天全县| 田林县| 盐边县| 莆田市| 广饶县| 望都县| 裕民县|