找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields; John Guckenheimer,Philip Holmes Book 1983 Springer Science+B

[復(fù)制鏈接]
樓主: 面臨
11#
發(fā)表于 2025-3-23 10:29:30 | 只看該作者
John Guckenheimer,Philip Holmescortical systems—the neocortical and the limbic. Fibers that connect two neurons within the telencephalon are called .. Fibers that connect a telencephalic neuron with a sub-telencephalic neuron (at the diencephalon, brainstem, or spinal cord) are called .. The association fibers can be divided into
12#
發(fā)表于 2025-3-23 14:07:36 | 只看該作者
13#
發(fā)表于 2025-3-23 18:11:16 | 只看該作者
14#
發(fā)表于 2025-3-23 22:56:18 | 只看該作者
Introduction: Differential Equations and Dynamical Systems, approach which we develop in this book. After recalling the basic existence and uniqueness theorems, we consider the linear, homogeneous, constant coefficient system and then introduce nonlinear and time-dependent systems and concepts such as the Poincaré map and structural stability. We then revie
15#
發(fā)表于 2025-3-24 02:33:08 | 只看該作者
An Introduction to Chaos: Four Examples, periodically forced single degree of freedom oscillators, a three-dimensional autonomous differential equation, and a two-dimensional map. The oscillators of van der Pol [1927] and Duffing [1918] originally arose as models in electric circuit theory and solid mechanics, respectively, while the Lore
16#
發(fā)表于 2025-3-24 10:11:34 | 只看該作者
Local Bifurcations,ich appear in the defining systems of equations. As these parameters are varied, changes may occur in the qualitative structure of the solutions for certain parameter values. These changes are called . and the parameter values are called .. To the extent possible, we develop in this chapter and Chap
17#
發(fā)表于 2025-3-24 11:01:54 | 只看該作者
Averaging and Perturbation from a Geometric Viewpoint,thods might be familiar to the reader who has studied nonlinear mechanics and perturbation theory, the present geometrical approach and the stress on obtaining approximations to Poincaré maps will probably be less familiar.
18#
發(fā)表于 2025-3-24 16:22:03 | 只看該作者
19#
發(fā)表于 2025-3-24 21:25:48 | 只看該作者
20#
發(fā)表于 2025-3-25 00:57:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 21:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天水市| 鞍山市| 宁武县| 无棣县| 淮阳县| 五原县| 尉氏县| 九龙坡区| 油尖旺区| 碌曲县| 台东市| 昭苏县| 甘肃省| 甘泉县| 色达县| 江安县| 苍南县| 彭泽县| 张北县| 陇西县| 万州区| 大方县| 丰镇市| 义马市| 张北县| 平顶山市| 克什克腾旗| 九台市| 永德县| 讷河市| 黎平县| 蓝田县| 海盐县| 衢州市| 界首市| 随州市| 石台县| 铜山县| 临桂县| 长丰县| 乌海市|