找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors; Viet-Thanh Pham,Sundarapandian Vaidyanathan,Tomasz Book 2018 Springer

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 21:53:21 | 只看該作者
Self-Excited Attractors in Jerk Systems: Overview and Numerical Investigation of Chaos Productionmplementations of the proposed systems. The purpose of this chapter is double-fold. First, a survey of several self-excited dissipative chaotic attractors based on jerk-equations is provided. The main categories of the included systems are explained from the viewpoint of nonlinearity type and their
32#
發(fā)表于 2025-3-27 03:22:27 | 只看該作者
33#
發(fā)表于 2025-3-27 06:40:18 | 只看該作者
Chaotic Business Cycles within a Kaldor-Kalecki Frameworkystems (i.e. business cycles) can be explained by the shape of the investment and saving functions which, in turn, are determined by the behaviour of economic agents. In addition it is explained how the model can accommodate those cumulative effects mentioned by Kaldor which may have the effect of t
34#
發(fā)表于 2025-3-27 11:19:26 | 只看該作者
Analysis of Three-Dimensional Autonomous Van der Pol–Duffing Type Oscillator and Its Synchronizationgs to chaotic systems with self-excited attractors. A suitable electronic circuit of the proposed autonomous VdPD type oscillator is designed and its investigations are performed using ORCAD-PSpice software. Orcard-PSpice results show a good agreement with the numerical simulations. Finally, synchro
35#
發(fā)表于 2025-3-27 14:37:47 | 只看該作者
36#
發(fā)表于 2025-3-27 20:24:57 | 只看該作者
An Autonomous Helmholtz Like-Jerk Oscillator: Analysis, Electronic Circuit Realization and Synchroniattractors found in the proposed autonomous Helmholtz like-jerk oscillator are verified by some laboratory experimental measurements. A good qualitative agreement is shown between the numerical simulations and the experimental results. In addition, the synchronization of two identical coupled Helmho
37#
發(fā)表于 2025-3-27 22:14:25 | 只看該作者
38#
發(fā)表于 2025-3-28 03:42:42 | 只看該作者
39#
發(fā)表于 2025-3-28 08:42:42 | 只看該作者
Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors
40#
發(fā)表于 2025-3-28 13:48:38 | 只看該作者
Book 2018 problems in nonlinear dynamical systems..The book provides a valuable reference guide to nonlinear dynamical systems for engineers, researchers, and graduate students, especially those whose work involves mechanics, electrical engineering, and control systems..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 02:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富宁县| 繁峙县| 呼和浩特市| 康定县| 蒙自县| 长宁区| 堆龙德庆县| 宁化县| 南漳县| 永平县| 临夏县| 阿城市| 平阳县| 依兰县| 措勤县| 黑河市| 昭通市| 三台县| 南和县| 吉林省| 芷江| 甘孜县| 四子王旗| 彭水| 乌兰察布市| 天镇县| 北碚区| 东港市| 常熟市| 盐亭县| 乐都县| 龙江县| 郑州市| 麻江县| 阿巴嘎旗| 隆尧县| 项城市| 昌邑市| 武陟县| 陆河县| 防城港市|