找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors; Viet-Thanh Pham,Sundarapandian Vaidyanathan,Tomasz Book 2018 Springer

[復(fù)制鏈接]
查看: 34681|回復(fù): 62
樓主
發(fā)表于 2025-3-21 16:29:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors
編輯Viet-Thanh Pham,Sundarapandian Vaidyanathan,Tomasz
視頻videohttp://file.papertrans.cn/668/667412/667412.mp4
概述Presents recent research on nonlinear systems with self-excited and hidden attractors.Explores the relationship between self-excited and hidden attractors.Discusses their multidisciplinary application
叢書(shū)名稱(chēng)Studies in Systems, Decision and Control
圖書(shū)封面Titlebook: Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors;  Viet-Thanh Pham,Sundarapandian Vaidyanathan,Tomasz Book 2018 Springer
描述.This book highlights the latest findings on nonlinear dynamical systems including two types of attractors: self-excited and hidden attractors. Further, it presents both theoretical and practical approaches to investigating nonlinear dynamical systems with self-excited and hidden attractors. The book includes 20 chapters contributed by respected experts, which focus on various applications such as biological systems, memristor-based systems, fractional-order systems, finance systems, business cycles, oscillators, coupled systems, hyperchaotic systems, flexible robot manipulators, electronic circuits, and control models. Special attention is given to modeling, design, circuit realization, and practical applications to address recent research problems in nonlinear dynamical systems..The book provides a valuable reference guide to nonlinear dynamical systems for engineers, researchers, and graduate students, especially those whose work involves mechanics, electrical engineering, and control systems..
出版日期Book 2018
關(guān)鍵詞Hidden Attractor; Self-excited Attractors; Bifurcation; Lyapunov Exponent; Electronic Circuit; Control; Sy
版次1
doihttps://doi.org/10.1007/978-3-319-71243-7
isbn_softcover978-3-030-10034-6
isbn_ebook978-3-319-71243-7Series ISSN 2198-4182 Series E-ISSN 2198-4190
issn_series 2198-4182
copyrightSpringer International Publishing AG 2018
The information of publication is updating

書(shū)目名稱(chēng)Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors影響因子(影響力)




書(shū)目名稱(chēng)Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors被引頻次




書(shū)目名稱(chēng)Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors被引頻次學(xué)科排名




書(shū)目名稱(chēng)Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors年度引用




書(shū)目名稱(chēng)Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors年度引用學(xué)科排名




書(shū)目名稱(chēng)Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors讀者反饋




書(shū)目名稱(chēng)Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:17:31 | 只看該作者
A New Chaotic Finance System: Its Analysis, Control, Synchronization and Circuit Designthe financial system at any position as well as controlling it to track any trajectory that is a smooth function of time. Numerical simulations are presented to demonstrate the feasibility of the proposed schemes.
板凳
發(fā)表于 2025-3-22 01:48:13 | 只看該作者
地板
發(fā)表于 2025-3-22 08:15:32 | 只看該作者
2198-4182 den attractors.Discusses their multidisciplinary application.This book highlights the latest findings on nonlinear dynamical systems including two types of attractors: self-excited and hidden attractors. Further, it presents both theoretical and practical approaches to investigating nonlinear dynami
5#
發(fā)表于 2025-3-22 09:17:54 | 只看該作者
6#
發(fā)表于 2025-3-22 15:10:19 | 只看該作者
7#
發(fā)表于 2025-3-22 18:19:18 | 只看該作者
A Six-Term Novel Chaotic System with Hidden Attractor and Its Circuit Designdel of the novel chaotic system is accompanied by an electrical circuit implementation, demonstrating chaotic behavior of the strange attractor. Finally, the circuit experimental results of the chaotic attractors show agreement with numerical simulations.
8#
發(fā)表于 2025-3-23 00:28:26 | 只看該作者
9#
發(fā)表于 2025-3-23 02:50:55 | 只看該作者
Existence and Control of Hidden Oscillations in a Memristive Autonomous Duffing Oscillatoren oscillations can exist not only in piecewise linear but also in smooth nonlinear circuits and systems. In addition, to control the hidden oscillation, the linear augmentation technique is used by stabilizing a steady state of augmented system.
10#
發(fā)表于 2025-3-23 06:02:59 | 只看該作者
ised and update edition of all relevant data. For each individual substance the information is presented in user friendly documents, containing data, figures and references. Easy access to the documents is provided via substance and property keywords, listings and full text retrieval.978-3-540-31362-5Series ISSN 1615-1844 Series E-ISSN 1616-9522
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 02:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄄城县| 东兴市| 吉隆县| 合阳县| 古丈县| 灵武市| 安泽县| 哈巴河县| 华坪县| 右玉县| 淮安市| 定安县| 思南县| 天祝| 乌拉特中旗| 凌云县| 麻栗坡县| 万盛区| 昆明市| 中江县| 米易县| 扎鲁特旗| 文安县| 五寨县| 右玉县| 广东省| 绵竹市| 平武县| 成武县| 交城县| 台南县| 江北区| 鲜城| 比如县| 丰台区| 旬阳县| 福建省| 普洱| 台前县| 星子县| 湘乡市|