找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Dynamical Systems and Chaos; H. W. Broer,S. A. Gils,F. Takens Conference proceedings 1996 Springer Basel AG 1996 KAM theory.bifu

[復(fù)制鏈接]
樓主: 頻率
31#
發(fā)表于 2025-3-26 21:48:58 | 只看該作者
32#
發(fā)表于 2025-3-27 02:27:27 | 只看該作者
On stability loss delay for a periodic trajectoryc trajectory) long before the moment of the bifurcation remain close to the unstable equilibrium (periodic trajectory) until the change of the parameter is of order one. The velocity of the parameter changing can be arbitrary small. In non-analytic systems (even in the ..case) in general there is no
33#
發(fā)表于 2025-3-27 08:56:21 | 只看該作者
Hamiltonian Perturbation Theory for Concentrated Structures in Inhomogeneous Mediaical investigation of the error. The results are shown to be equivalent. The Fredholm-argument implies that the approximation is valid on spatial-temporal scales on which deformations are of order one, thereby justifying the physically more attractive method of consistent evolution. All results are
34#
發(fā)表于 2025-3-27 12:04:19 | 只看該作者
Estimation of dimension and order of time series is of influence on the future; this notion of state makes sense for both deterministic and stochastic systems. This same idea of order was also studied by Savit and Green [SG, 1991]. Their approach is closer to the above mentioned considerations concerning deterministic systems. The notions of orde
35#
發(fā)表于 2025-3-27 17:32:06 | 只看該作者
Progress in Nonlinear Differential Equations and Their Applicationshttp://image.papertrans.cn/n/image/667409.jpg
36#
發(fā)表于 2025-3-27 21:49:59 | 只看該作者
37#
發(fā)表于 2025-3-27 23:53:54 | 只看該作者
38#
發(fā)表于 2025-3-28 02:58:58 | 只看該作者
Nonlinear Dynamical Systems and Chaos978-3-0348-7518-9Series ISSN 1421-1750 Series E-ISSN 2374-0280
39#
發(fā)表于 2025-3-28 06:19:28 | 只看該作者
40#
發(fā)表于 2025-3-28 13:02:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
池州市| 鹤峰县| 都江堰市| 彩票| 三江| 安义县| 嘉定区| 全南县| 应用必备| 屯门区| 桐乡市| 毕节市| 西峡县| 岳普湖县| 永济市| 枣阳市| 宜城市| 姚安县| 广宗县| 南通市| 尼勒克县| 安西县| 嘉黎县| 宁蒗| 元朗区| 开阳县| 广元市| 洛隆县| 永州市| 华容县| 遂溪县| 镶黄旗| 英超| 大英县| 芮城县| 屯昌县| 灵璧县| 方正县| 奎屯市| 县级市| 山东省|