找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Dynamical Systems and Chaos; H. W. Broer,S. A. Gils,F. Takens Conference proceedings 1996 Springer Basel AG 1996 KAM theory.bifu

[復(fù)制鏈接]
查看: 28625|回復(fù): 62
樓主
發(fā)表于 2025-3-21 18:10:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Nonlinear Dynamical Systems and Chaos
編輯H. W. Broer,S. A. Gils,F. Takens
視頻videohttp://file.papertrans.cn/668/667409/667409.mp4
概述The book can be recommended to researchers specializing in dynamical systems." - Applied Mathematics, XL
叢書(shū)名稱(chēng)Progress in Nonlinear Differential Equations and Their Applications
圖書(shū)封面Titlebook: Nonlinear Dynamical Systems and Chaos;  H. W. Broer,S. A. Gils,F. Takens Conference proceedings 1996 Springer Basel AG 1996 KAM theory.bifu
描述Symmetries in dynamical systems, "KAM theory and other perturbation theories", "Infinite dimensional systems", "Time series analysis" and "Numerical continuation and bifurcation analysis" were the main topics of the December 1995 Dynamical Systems Conference held in Groningen in honour of Johann Bernoulli. They now form the core of this work which seeks to present the state of the art in various branches of the theory of dynamical systems. A number of articles have a survey character whereas others deal with recent results in current research. It contains interesting material for all members of the dynamical systems community, ranging from geometric and analytic aspects from a mathematical point of view to applications in various sciences.
出版日期Conference proceedings 1996
關(guān)鍵詞KAM theory; bifurcation; chaos; dynamical systems; time series analysis
版次1
doihttps://doi.org/10.1007/978-3-0348-7518-9
isbn_softcover978-3-0348-7520-2
isbn_ebook978-3-0348-7518-9Series ISSN 1421-1750 Series E-ISSN 2374-0280
issn_series 1421-1750
copyrightSpringer Basel AG 1996
The information of publication is updating

書(shū)目名稱(chēng)Nonlinear Dynamical Systems and Chaos影響因子(影響力)




書(shū)目名稱(chēng)Nonlinear Dynamical Systems and Chaos影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Nonlinear Dynamical Systems and Chaos網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Nonlinear Dynamical Systems and Chaos網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Nonlinear Dynamical Systems and Chaos被引頻次




書(shū)目名稱(chēng)Nonlinear Dynamical Systems and Chaos被引頻次學(xué)科排名




書(shū)目名稱(chēng)Nonlinear Dynamical Systems and Chaos年度引用




書(shū)目名稱(chēng)Nonlinear Dynamical Systems and Chaos年度引用學(xué)科排名




書(shū)目名稱(chēng)Nonlinear Dynamical Systems and Chaos讀者反饋




書(shū)目名稱(chēng)Nonlinear Dynamical Systems and Chaos讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:01:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:28:17 | 只看該作者
地板
發(fā)表于 2025-3-22 06:57:58 | 只看該作者
The Rolling Discerpendicular to the disc, one can reduce the dynamics to a four dimensional system, see section 2. This reduced system was obtained for the first time by Ferrers [6] in 1872, using Euler-angles. The first serious analysis of these equations was given by Vierkandt [18] in 1892. He showed that almost all orbits are periodic.
5#
發(fā)表于 2025-3-22 12:17:33 | 只看該作者
Testing for ,,-Symmetry with a Recursive Detectivemoreover the numerical evaluation can be costly. Representation theory and invariant theory are used to derive efficient methods. A method is proposed to evaluate a detective recursively for the symmetric group .. Comparision shows that this is very efficient both in CPU time and in storage.
6#
發(fā)表于 2025-3-22 15:11:52 | 只看該作者
Parametric and autoparametric resonancemetrically excited system in section 2. This system is a dissipative version of the study by Broer and Vegter (1992). In section 3 we consider an autoparametric two degrees of freedom system which is in some sense a generalisation of section 2. Such a system admits a richer bifurcation structure and chaotic dynamics.
7#
發(fā)表于 2025-3-22 17:04:06 | 只看該作者
8#
發(fā)表于 2025-3-22 22:49:58 | 只看該作者
Towards a Global Theory of Singularly Perturbed Dynamical Systemslocal theory to a description of qualitative features of the global dynamics for systems with two time scales. We fill in portions of this outline within the context of systems that have two slow variables and two fast variables. Even within this low dimensional setting, most basic questions about global properties remain unanswered.
9#
發(fā)表于 2025-3-23 04:25:51 | 只看該作者
10#
發(fā)表于 2025-3-23 07:42:59 | 只看該作者
Conference proceedings 1996er of articles have a survey character whereas others deal with recent results in current research. It contains interesting material for all members of the dynamical systems community, ranging from geometric and analytic aspects from a mathematical point of view to applications in various sciences.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沾化县| 沭阳县| 乌兰浩特市| 平江县| 临洮县| 海兴县| 鹿泉市| 平潭县| 沙坪坝区| 潮安县| 沁源县| 丘北县| 凯里市| 原阳县| 剑川县| 闵行区| 微山县| 平安县| 顺昌县| 乐业县| 铁力市| 建平县| 大港区| 嘉禾县| 松潘县| 丹江口市| 墨脱县| 马尔康县| 双流县| 汝阳县| 万载县| 永修县| 盖州市| 睢宁县| 恩平市| 上杭县| 新密市| 塘沽区| 宾阳县| 闵行区| 武乡县|