找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Diffusion Equations and Their Equilibrium States, 3; Proceedings from a C N. G. Lloyd,W. M. Ni,J. Serrin Conference proceedings 1

[復(fù)制鏈接]
樓主: FETID
11#
發(fā)表于 2025-3-23 13:32:34 | 只看該作者
12#
發(fā)表于 2025-3-23 16:40:43 | 只看該作者
,Local Existence and Uniqueness of Positive Solutions of the Equation ,, in ?, and a Related EquatioWe will consider radial solutions of the following problem: where, ? is a continuous radial function and ? is a small real parameter. This equation and its generalizations have been studied in a large numbers of papers (see for example [BE], [DN], [LN], [NI1&2]).
13#
發(fā)表于 2025-3-23 20:56:05 | 只看該作者
Singularities of Solutions of a Class of Quasilinear Equations in Divergence Form,In Section 1 of this paper we study the behavior near the origin of the positive nonradial solutions of the doubly nonlinear .-dimensional partial differential equation
14#
發(fā)表于 2025-3-23 22:51:11 | 只看該作者
On the Structure of Solutions for Some Semilinear Elliptic Equations,In this paper we shall review some recent results about the structure of the solution sets of equations and in ?., n ≥ 2, where, K≠ 0 is a given locally H?lder continuous function on ?. and σ > 1 is a constant. We shall consider mainly two types of solutions: ..(.) denotes a solution of (1.1) or (1.2) satisfying
15#
發(fā)表于 2025-3-24 05:59:21 | 只看該作者
16#
發(fā)表于 2025-3-24 10:34:03 | 只看該作者
17#
發(fā)表于 2025-3-24 11:04:40 | 只看該作者
,Global Solutions for a Class of Monge-Ampère Equations,In this paper we prove, by shooting method, the existence of radially symmetric ground state solutions for a class of Monge-Ampère equations changing type.
18#
發(fā)表于 2025-3-24 15:57:45 | 只看該作者
19#
發(fā)表于 2025-3-24 19:11:28 | 只看該作者
20#
發(fā)表于 2025-3-25 00:45:53 | 只看該作者
Nonlinear Diffusion Equations and Their Equilibrium States, 3978-1-4612-0393-3Series ISSN 1421-1750 Series E-ISSN 2374-0280
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
弥渡县| 长治县| 磐安县| 香港| 辉县市| 建德市| 清河县| 广州市| 韶关市| 霍邱县| 海盐县| 南安市| 九江县| 会昌县| 兴隆县| 宜君县| 湖南省| 东乡县| 玉树县| 获嘉县| 栾城县| 兴安县| 焉耆| 中西区| 福州市| 双鸭山市| 德令哈市| 遵义市| 达州市| 富民县| 商河县| 武清区| 微山县| 南宫市| 邹平县| 修文县| 贵定县| 玛沁县| 习水县| 南丹县| 竹山县|