找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Diffusion Equations and Their Equilibrium States, 3; Proceedings from a C N. G. Lloyd,W. M. Ni,J. Serrin Conference proceedings 1

[復(fù)制鏈接]
查看: 50700|回復(fù): 60
樓主
發(fā)表于 2025-3-21 19:09:39 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Nonlinear Diffusion Equations and Their Equilibrium States, 3
副標(biāo)題Proceedings from a C
編輯N. G. Lloyd,W. M. Ni,J. Serrin
視頻videohttp://file.papertrans.cn/668/667397/667397.mp4
叢書名稱Progress in Nonlinear Differential Equations and Their Applications
圖書封面Titlebook: Nonlinear Diffusion Equations and Their Equilibrium States, 3; Proceedings from a C N. G. Lloyd,W. M. Ni,J. Serrin Conference proceedings 1
描述Nonlinear diffusion equations have held a prominent place in the theory of partial differential equations, both for the challenging and deep math- ematical questions posed by such equations and the important role they play in many areas of science and technology. Examples of current inter- est are biological and chemical pattern formation, semiconductor design, environmental problems such as solute transport in groundwater flow, phase transitions and combustion theory. Central to the theory is the equation Ut = ~cp(U) + f(u). Here ~ denotes the n-dimensional Laplacian, cp and f are given functions and the solution is defined on some domain n x [0, T] in space-time. FUn- damental questions concern the existence, uniqueness and regularity of so- lutions, the existence of interfaces or free boundaries, the question as to whether or not the solution can be continued for all time, the asymptotic behavior, both in time and space, and the development of singularities, for instance when the solution ceases to exist after finite time, either through extinction or through blow up.
出版日期Conference proceedings 1992
關(guān)鍵詞Area; Blowing up; Finite; behavior; boundary element method; design; differential equation; eXist; equation;
版次1
doihttps://doi.org/10.1007/978-1-4612-0393-3
isbn_softcover978-1-4612-6741-6
isbn_ebook978-1-4612-0393-3Series ISSN 1421-1750 Series E-ISSN 2374-0280
issn_series 1421-1750
copyrightSpringer Science+Business Media New York 1992
The information of publication is updating

書目名稱Nonlinear Diffusion Equations and Their Equilibrium States, 3影響因子(影響力)




書目名稱Nonlinear Diffusion Equations and Their Equilibrium States, 3影響因子(影響力)學(xué)科排名




書目名稱Nonlinear Diffusion Equations and Their Equilibrium States, 3網(wǎng)絡(luò)公開度




書目名稱Nonlinear Diffusion Equations and Their Equilibrium States, 3網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlinear Diffusion Equations and Their Equilibrium States, 3被引頻次




書目名稱Nonlinear Diffusion Equations and Their Equilibrium States, 3被引頻次學(xué)科排名




書目名稱Nonlinear Diffusion Equations and Their Equilibrium States, 3年度引用




書目名稱Nonlinear Diffusion Equations and Their Equilibrium States, 3年度引用學(xué)科排名




書目名稱Nonlinear Diffusion Equations and Their Equilibrium States, 3讀者反饋




書目名稱Nonlinear Diffusion Equations and Their Equilibrium States, 3讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:07:52 | 只看該作者
An Existence Result Via ,, Regularity for Some Nonlinear Elliptic Equations,ual, ?? → ?. is a continuous function satisfying |?(.)| ≤ c.(1 + |.|.) and .(.) belongs to (..(Ω)).. When and 0 ≤ γ ≤ [q(p-1)]*, we prove the existence of a solution u which belongs to. This .. -regularity result (which implies that ?(.) belongs to L.(Ω)).) is an important step in the proof of the existence of a solution.
板凳
發(fā)表于 2025-3-22 00:52:46 | 只看該作者
地板
發(fā)表于 2025-3-22 05:32:39 | 只看該作者
5#
發(fā)表于 2025-3-22 10:44:36 | 只看該作者
6#
發(fā)表于 2025-3-22 15:22:54 | 只看該作者
7#
發(fā)表于 2025-3-22 20:25:42 | 只看該作者
Progress in Nonlinear Differential Equations and Their Applicationshttp://image.papertrans.cn/n/image/667397.jpg
8#
發(fā)表于 2025-3-22 23:01:47 | 只看該作者
https://doi.org/10.1007/978-1-4612-0393-3Area; Blowing up; Finite; behavior; boundary element method; design; differential equation; eXist; equation;
9#
發(fā)表于 2025-3-23 04:40:37 | 只看該作者
10#
發(fā)表于 2025-3-23 08:49:06 | 只看該作者
Nonlinear Parabolic Equations Arising in Semiconductor and Viscous Droplets Models,This paper is devoted to a class of higher order degenerate parabolic equations whose simplest example is the fourth order equation where . = ?/?., . = .(.,.) is a real-valued function and . is a real parameter, . > 0.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南江县| 越西县| 淅川县| 文山县| 务川| 邢台县| 湖南省| 江阴市| 达日县| 周宁县| 当涂县| 龙里县| 怀化市| 二连浩特市| 阳信县| 大港区| 封丘县| 梅州市| 理塘县| 淳化县| 社会| 大埔区| 乃东县| 镇平县| 大方县| 乐陵市| 锦屏县| 财经| 靖江市| 张家界市| 大悟县| 锡林浩特市| 囊谦县| 成都市| 泸水县| 宁波市| 剑阁县| 晴隆县| 金华市| 绍兴县| 白银市|