找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Noncompact Lie Groups and Some of Their Applications; Elizabeth A. Tanner,Raj Wilson Book 1994 Springer Science+Business Media Dordrecht 1

[復(fù)制鏈接]
樓主: graphic
31#
發(fā)表于 2025-3-26 21:10:24 | 只看該作者
Generalized Square Integrability and Coherent StatesWe present a method for the construction of coherent states, based on the notion of square integrability of a group representation on a homogeneous space. This generalized formalism allows to cover cases hitherto inaccessible, such as the Poincaré group.
32#
發(fā)表于 2025-3-27 01:28:23 | 只看該作者
Applications of Sp(3,R) in Nuclear PhysicsA brief overview is given of the way the non-compact symplectic group Sp(3,R) is used as a dynamical group in the microscopic theory of nuclear collective motion. Two unfamiliar concepts arise in the theory: the concept of an . and the concept of a .. These concepts are explained and illustrated.
33#
發(fā)表于 2025-3-27 08:50:22 | 只看該作者
Extensions of the Mass 0 Helicity 0 Representation of the Poincare GroupWigner’s “l(fā)ittle group” description of the irreducible representations of the Poincare group associated to the foward light cone is extended to smooth representations of finite length. As an application, we prove that there is a unique indecomposable representation of this group composed of . copies of the mass 0 helicity 0 representation.
34#
發(fā)表于 2025-3-27 09:28:10 | 只看該作者
35#
發(fā)表于 2025-3-27 15:37:01 | 只看該作者
36#
發(fā)表于 2025-3-27 20:30:35 | 只看該作者
Nato Science Series C:http://image.papertrans.cn/n/image/667206.jpg
37#
發(fā)表于 2025-3-28 01:29:47 | 只看該作者
38#
發(fā)表于 2025-3-28 04:16:40 | 只看該作者
Harish-Chandra’s c-Function. A Mathematical Jewelin meromorphic function c. While he showed that this function determines the Plancherel measure for the spherical transform on . it has later turned out that this c-function plays many other roles in the representation theory of . and in analysis on various homogeneous spaces of .; see particularly Theorems 6.1, 8.1, and 9.1.
39#
發(fā)表于 2025-3-28 10:20:51 | 只看該作者
40#
發(fā)表于 2025-3-28 13:00:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开远市| 兴山县| 磐安县| 博乐市| 吉安县| 泌阳县| 离岛区| 新邵县| 汉寿县| 凤山县| 宁化县| 江陵县| 宁津县| 明水县| 静宁县| 邢台市| 东方市| 绥化市| 宜良县| 上栗县| 荃湾区| 林西县| 鄯善县| 莱西市| 雅江县| 密云县| 武穴市| 托克逊县| 淮安市| 孟州市| 银川市| 卢湾区| 平果县| 页游| 黄山市| 临高县| 长宁县| 衡东县| 三穗县| 四子王旗| 增城市|