找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Noncompact Lie Groups and Some of Their Applications; Elizabeth A. Tanner,Raj Wilson Book 1994 Springer Science+Business Media Dordrecht 1

[復(fù)制鏈接]
樓主: graphic
21#
發(fā)表于 2025-3-25 03:58:02 | 只看該作者
Weyl Group Actions on Lagrangian Cycles and Rossmann’s Formulacally defined ..-invariant symplectic structure, and thus carries a distinguished ..-invariant measure. Kirillov’s character formula — in those cases when it applies — expresses the irreducible unitary characters of .. as Fourier transforms of the distinguished measures on coadjoint orbits, which ar
22#
發(fā)表于 2025-3-25 09:50:36 | 只看該作者
23#
發(fā)表于 2025-3-25 12:32:06 | 只看該作者
24#
發(fā)表于 2025-3-25 18:23:30 | 只看該作者
Nilpotent Groups and Anharmonic Oscillators the quartic anharmonic oscillator is analyzed in detail and the relationship between the quartic anharmonic oscillator Hamiltonian and irreducible representations of Lie algebra elements of the nilpotent group is given. Scaling operators are used to partially determine the functional form of the ei
25#
發(fā)表于 2025-3-25 23:15:13 | 只看該作者
26#
發(fā)表于 2025-3-26 00:30:03 | 只看該作者
Basic Harmonic Analysis on Pseudo-Riemannian Symmetric SpacesWe give a survey of the present knowledge regarding basic questions in harmonic analysis on pseudo-Riemannian symmetric spaces . /., where . is a semisimple Lie group: The definition of the Fourier transform, the Plancherel formula, the inversion formula and the Paley-Wiener theorem.
27#
發(fā)表于 2025-3-26 05:17:15 | 只看該作者
28#
發(fā)表于 2025-3-26 09:55:47 | 只看該作者
Radon transform on halfplanes via group theoryConsider the halfplane . as a subset of . and the group . which acts transitively on . via ..
29#
發(fā)表于 2025-3-26 15:39:02 | 只看該作者
Analytic torsion and automorphic formsIn this note we prove a vanishing theorem for the analytic torsion of a locally symmetric space.
30#
發(fā)表于 2025-3-26 20:15:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤壁市| 平山县| 乐东| 西林县| 彭泽县| 仙桃市| 黄大仙区| 陆川县| 德钦县| 息烽县| 台安县| 崇阳县| 洛阳市| 屏山县| 博湖县| 定远县| 岑溪市| 巫山县| 故城县| 沭阳县| 通州市| 广东省| 龙川县| 巴中市| 息烽县| 镇远县| 环江| 班戈县| 新宾| 平安县| 北辰区| 湖州市| 昭苏县| 耒阳市| 沅江市| 上杭县| 萍乡市| 霸州市| 肃南| 中方县| 沾化县|