找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Noncommutative Harmonic Analysis; In Honor of Jacques Patrick Delorme,Michèle Vergne Book 2004 Birkh?user Boston 2004 Dolbeault cohomology

[復制鏈接]
樓主: Lampoon
31#
發(fā)表于 2025-3-26 22:22:11 | 只看該作者
32#
發(fā)表于 2025-3-27 03:31:36 | 只看該作者
33#
發(fā)表于 2025-3-27 08:04:56 | 只看該作者
Summation formulas, from Poisson and Voronoi to the present,ndeed, the general case of (1.2) can be reduced to the special case of . = 0, . = 1, which amounts to the statement that the Fourier series of a periodic function of bounded variation converges pointwise, to the average of its left and right-hand limits.
34#
發(fā)表于 2025-3-27 09:41:27 | 只看該作者
0743-1643 s as a powerful tool.This volume is devoted to the theme of Noncommutative Harmonic Analysis and consists of articles in honor of Jacques Carmona, whose scientific interests range through all aspects of Lie group representations. The topics encompass the theory of representations of reductive Lie gr
35#
發(fā)表于 2025-3-27 15:54:32 | 只看該作者
36#
發(fā)表于 2025-3-27 19:26:54 | 只看該作者
,La formule de Plancherel pour les groupes de Lie presque algébriques réels, semisimple Lie groups..The main ingredients of the proof are:.In order to illustrate the main steps of the proof, we treat the example of the semidirect product of the universal covering of SL.(?) by the three-dimensional Heisenberg group.
37#
發(fā)表于 2025-3-28 00:55:09 | 只看該作者
Intertwining ladder representations for SU(,, ,) into Dolbeault cohomology,es the Dolbeault model into the vector bundle model. By passing through the Fock space realization of the ladder representations, we invert the Penrose transform, and thus intertwine the ladder representations into Dolbeault cohomology.
38#
發(fā)表于 2025-3-28 04:24:19 | 只看該作者
,McKay’s correspondence and characters of finite subgroups of ,(2),aturally as numerators of Poincaré series associated to finite subgroups of SU(2) acting on polynomials in two variables. These polynomials have been the subject of a number of investigations, but their interpretation as characters has apparently not been noticed.
39#
發(fā)表于 2025-3-28 07:45:30 | 只看該作者
40#
發(fā)表于 2025-3-28 10:37:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
呼和浩特市| 什邡市| 沽源县| 密山市| 宁南县| 广丰县| 临江市| 拉孜县| 鹤庆县| 古丈县| 九江县| 陵川县| 惠安县| 遂溪县| 广平县| 武城县| 盐边县| 关岭| 改则县| 宁国市| 富平县| 永年县| 饶河县| 东山县| 道孚县| 栾城县| 滁州市| 齐河县| 沾益县| 澄城县| 饶河县| 青田县| 洛宁县| 武胜县| 札达县| 韶山市| 南澳县| 惠东县| 黎川县| 太仆寺旗| 祁阳县|