找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Noncommutative Harmonic Analysis; In Honor of Jacques Patrick Delorme,Michèle Vergne Book 2004 Birkh?user Boston 2004 Dolbeault cohomology

[復(fù)制鏈接]
查看: 37288|回復(fù): 65
樓主
發(fā)表于 2025-3-21 16:35:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Noncommutative Harmonic Analysis
副標(biāo)題In Honor of Jacques
編輯Patrick Delorme,Michèle Vergne
視頻videohttp://file.papertrans.cn/668/667197/667197.mp4
概述International experts on harmonic analysis have contributed to this book.Explores Kontsevich quantization, which has appeared in recent years as a powerful tool
叢書(shū)名稱(chēng)Progress in Mathematics
圖書(shū)封面Titlebook: Noncommutative Harmonic Analysis; In Honor of Jacques  Patrick Delorme,Michèle Vergne Book 2004 Birkh?user Boston 2004 Dolbeault cohomology
描述.This volume is devoted to the theme of Noncommutative Harmonic Analysis and consists of articles in honor of Jacques Carmona, whose scientific interests range through all aspects of Lie group representations. The topics encompass the theory of representations of reductive Lie groups, and especially the determination of the unitary dual, the problem of geometric realizations of representations, harmonic analysis on reductive symmetric spaces, the study of automorphic forms, and results in harmonic analysis that apply to the Langlands program. ...General Lie groups are also discussed, particularly from the orbit method perspective, which has been a constant source of inspiration for both the theory of reductive Lie groups and for general Lie groups. Also covered is Kontsevich quantization, which has appeared in recent years as a powerful tool. ..Contributors: V. Baldoni-Silva; D. Barbasch; P. Bieliavsky; N. Bopp; A. Bouaziz; P. Delorme; P. Harinck; A. Hersant; M.S. Khalgui; A.W. Knapp; B. Kostant; J. Kuttler; M. Libine; J.D. Lorch; L.A. Mantini; S.D. Miller; J.D. Novak; M.-N. Panichi; M. Pevzner; W. Rossmann; H. Rubenthaler; W. Schmid; P. Torasso; C. Torossian; E.P. van den Ban; M.
出版日期Book 2004
關(guān)鍵詞Dolbeault cohomology; Group representation; calculus; cohomology; differential equation; harmonic analysi
版次1
doihttps://doi.org/10.1007/978-0-8176-8204-0
isbn_softcover978-1-4612-6489-7
isbn_ebook978-0-8176-8204-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Boston 2004
The information of publication is updating

書(shū)目名稱(chēng)Noncommutative Harmonic Analysis影響因子(影響力)




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis被引頻次




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis被引頻次學(xué)科排名




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis年度引用




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis年度引用學(xué)科排名




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis讀者反饋




書(shū)目名稱(chēng)Noncommutative Harmonic Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:48:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:03:17 | 只看該作者
地板
發(fā)表于 2025-3-22 08:13:02 | 只看該作者
A branching law for subgroups fixed by an involution and a noncompact analogue of the Borel-Weil thl terminology) is replaced by an arbitrary irreducible representation τ of .. For the generalization we establish the existence of a unique minimal representation of g associated to τ..Another application (3) yields a noncompact analogue of the Borel-Weil theorem. For a suitable semisimple Lie group
5#
發(fā)表于 2025-3-22 10:00:47 | 只看該作者
A localization argument for characters of reductive Lie groups: an introduction and examples,ars in [L]..I have made every effort to present this article so that it is widely accessible. Also, although characteristic cycles of sheaves is mentioned, I do not assume that the reader is familiar with this notion.
6#
發(fā)表于 2025-3-22 13:45:46 | 只看該作者
7#
發(fā)表于 2025-3-22 21:05:41 | 只看該作者
0743-1643 ine; J.D. Lorch; L.A. Mantini; S.D. Miller; J.D. Novak; M.-N. Panichi; M. Pevzner; W. Rossmann; H. Rubenthaler; W. Schmid; P. Torasso; C. Torossian; E.P. van den Ban; M. 978-1-4612-6489-7978-0-8176-8204-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
8#
發(fā)表于 2025-3-22 22:10:42 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/n/image/667197.jpg
9#
發(fā)表于 2025-3-23 04:35:37 | 只看該作者
10#
發(fā)表于 2025-3-23 06:06:26 | 只看該作者
Patrick Delorme,Michèle VergneInternational experts on harmonic analysis have contributed to this book.Explores Kontsevich quantization, which has appeared in recent years as a powerful tool
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉义市| 崇州市| 宜章县| 华容县| 阳山县| 高清| 齐河县| 平乡县| 仙游县| 聂荣县| 治多县| 百色市| 饶平县| 大庆市| 吉木萨尔县| 甘孜县| 盐城市| 江山市| 青河县| 汕头市| 青冈县| 北碚区| 奇台县| 长寿区| 金塔县| 宿迁市| 远安县| 霸州市| 丰城市| 衡阳县| 根河市| 赣州市| 元谋县| 娱乐| 吉林省| 平阳县| 根河市| 玛沁县| 磐石市| 裕民县| 长顺县|