找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonarchimedean and Tropical Geometry; Matthew Baker,Sam Payne Conference proceedings 2016 Springer International Publishing Switzerland 20

[復(fù)制鏈接]
樓主: 誤解
11#
發(fā)表于 2025-3-23 10:26:06 | 只看該作者
Berkovich Skeleta and Birational Geometry,nt series and the birational geometry of one-parameter degenerations of smooth projective varieties. The central objects in our theory are the . and the . of the degeneration. We tried to keep the text self-contained, so that it can serve as an introduction to Berkovich geometry for birational geometers.
12#
發(fā)表于 2025-3-23 15:09:27 | 只看該作者
13#
發(fā)表于 2025-3-23 21:56:41 | 只看該作者
Forms and Currents on the Analytification of an Algebraic Variety (After Chambert-Loir and Ducros),Chambert-Loir and Ducros have recently introduced real differential forms and currents on Berkovich spaces. In these notes, we survey this new theory and we will compare it with tropical algebraic geometry.
14#
發(fā)表于 2025-3-23 23:00:10 | 只看該作者
15#
發(fā)表于 2025-3-24 06:09:28 | 只看該作者
Degeneration of Linear Series from the Tropical Point of View and Applications,We discuss linear series on tropical curves and their relation to classical algebraic geometry, describe the main techniques of the subject, and survey some of the recent major developments in the field, with an emphasis on applications to problems in Brill–Noether theory and arithmetic geometry.
16#
發(fā)表于 2025-3-24 08:37:19 | 只看該作者
17#
發(fā)表于 2025-3-24 11:00:57 | 只看該作者
https://doi.org/10.1007/978-3-319-30945-3Tropical Geometry; Nonarchimedean Analysis; algebraic geometry; Berkovich Spaces; Hodge Theory; Huber The
18#
發(fā)表于 2025-3-24 17:36:49 | 只看該作者
19#
發(fā)表于 2025-3-24 22:27:39 | 只看該作者
20#
發(fā)表于 2025-3-25 03:12:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 12:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潼南县| 鄂托克旗| 马尔康县| 九台市| 镇巴县| 武安市| 策勒县| 铜川市| 金溪县| 新乡市| 长丰县| 板桥市| 绥化市| 永平县| 公主岭市| 沈丘县| 彰化市| 仙居县| 博客| 德州市| 观塘区| 海城市| 林西县| 普陀区| 清涧县| 长寿区| 勐海县| 乡城县| 云阳县| 抚远县| 南木林县| 界首市| 木里| 淮北市| 永昌县| 泗洪县| 信阳市| 景泰县| 天门市| 息烽县| 牟定县|