找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonarchimedean and Tropical Geometry; Matthew Baker,Sam Payne Conference proceedings 2016 Springer International Publishing Switzerland 20

[復制鏈接]
查看: 42027|回復: 47
樓主
發(fā)表于 2025-3-21 18:41:25 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Nonarchimedean and Tropical Geometry
編輯Matthew Baker,Sam Payne
視頻videohttp://file.papertrans.cn/668/667166/667166.mp4
概述Includes supplementary material:
叢書名稱Simons Symposia
圖書封面Titlebook: Nonarchimedean and Tropical Geometry;  Matthew Baker,Sam Payne Conference proceedings 2016 Springer International Publishing Switzerland 20
描述.Thisvolume grew out of two Simons Symposia on "Nonarchimedean and tropicalgeometry" which took place on the island of St. John in April 2013 and inPuerto Rico in February 2015. Each meeting gathered a small group of expertsworking near the interface between tropical geometry and nonarchimedeananalytic spaces for a series of inspiring and provocative lectures on cuttingedge research, interspersed with lively discussions and collaborative work insmall groups. The articles collected here, which include high-level surveys aswell as original research, mirror the main themes of the two Symposia...Topicscovered in this volume include:?.Differential forms and currents, andsolutions of Monge-Ampere type differential equations on Berkovich spaces andtheir skeletons;?.The homotopy types of nonarchimedean analytifications;.The existence of "faithful tropicalizations" which encode the topology andgeometry of analytifications;.Relations between nonarchimedean analyticspaces and algebraic geometry, including logarithmic schemes, birationalgeometry, and the geometry of algebraic curves;.Extended notions oftropical varieties which relate to Huber‘s theory of adic spaces analogously tothe way that
出版日期Conference proceedings 2016
關鍵詞Tropical Geometry; Nonarchimedean Analysis; algebraic geometry; Berkovich Spaces; Hodge Theory; Huber The
版次1
doihttps://doi.org/10.1007/978-3-319-30945-3
isbn_softcover978-3-319-80924-3
isbn_ebook978-3-319-30945-3Series ISSN 2365-9564 Series E-ISSN 2365-9572
issn_series 2365-9564
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Nonarchimedean and Tropical Geometry影響因子(影響力)




書目名稱Nonarchimedean and Tropical Geometry影響因子(影響力)學科排名




書目名稱Nonarchimedean and Tropical Geometry網(wǎng)絡公開度




書目名稱Nonarchimedean and Tropical Geometry網(wǎng)絡公開度學科排名




書目名稱Nonarchimedean and Tropical Geometry被引頻次




書目名稱Nonarchimedean and Tropical Geometry被引頻次學科排名




書目名稱Nonarchimedean and Tropical Geometry年度引用




書目名稱Nonarchimedean and Tropical Geometry年度引用學科排名




書目名稱Nonarchimedean and Tropical Geometry讀者反饋




書目名稱Nonarchimedean and Tropical Geometry讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:57:53 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:20:27 | 只看該作者
Introduction to Adic Tropicalization,with algebraic data of the associated initial degenerations, is called the .. It?satisfies a theorem of the form “Huber analytification is the limit of all adic tropicalizations.” We explain this limit theorem in the present article, and illustrate connections between adic tropicalization and the curve complexes of O. Amini and M. Baker.
地板
發(fā)表于 2025-3-22 05:07:57 | 只看該作者
5#
發(fā)表于 2025-3-22 09:13:13 | 只看該作者
6#
發(fā)表于 2025-3-22 15:02:56 | 只看該作者
7#
發(fā)表于 2025-3-22 17:17:49 | 只看該作者
8#
發(fā)表于 2025-3-22 21:36:53 | 只看該作者
978-3-319-80924-3Springer International Publishing Switzerland 2016
9#
發(fā)表于 2025-3-23 04:47:50 | 只看該作者
10#
發(fā)表于 2025-3-23 07:31:58 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 21:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宜城市| 甘谷县| 伊川县| 万安县| 宜昌市| 涞源县| 布拖县| 宝丰县| 闽侯县| 石景山区| 高安市| 宁海县| 九寨沟县| 阆中市| 都昌县| 拜城县| 裕民县| 正安县| 旌德县| 巴中市| 方正县| 甘孜县| 乌拉特后旗| 汨罗市| 虎林市| 江永县| 横山县| 木兰县| 宿州市| 吴川市| 巧家县| 定边县| 泾源县| 方山县| 五原县| 安图县| 廊坊市| 襄垣县| 萝北县| 轮台县| 仁化县|