找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Gaussian Autoregressive-Type Time Series; N. Balakrishna Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive li

[復(fù)制鏈接]
查看: 16959|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:03:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Non-Gaussian Autoregressive-Type Time Series
編輯N. Balakrishna
視頻videohttp://file.papertrans.cn/667/666913/666913.mp4
概述Brings together a variety of non-Gaussian autoregressive-type models to analyze time-series data.Discusses the probabilistic and second-order properties of all models.Reviews the models available for
圖書封面Titlebook: Non-Gaussian Autoregressive-Type Time Series;  N. Balakrishna Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive li
描述.This book brings together a variety of non-Gaussian autoregressive-type models to analyze time-series data. This book collects and collates most of the available models in the field and provide their probabilistic and inferential properties. This book classifies the stationary time-series models into different groups such as linear stationary models with non-Gaussian innovations, linear stationary models with non-Gaussian marginal distributions, product autoregressive models and minification models. Even though several non-Gaussian time-series models are available in the literature, most of them are focusing on the model structure and the probabilistic properties..
出版日期Book 2021
關(guān)鍵詞non Gaussian time series; exponential autoregressive models; laplace autoregressive models; logistic au
版次1
doihttps://doi.org/10.1007/978-981-16-8162-2
isbn_softcover978-981-16-8164-6
isbn_ebook978-981-16-8162-2
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Non-Gaussian Autoregressive-Type Time Series影響因子(影響力)




書目名稱Non-Gaussian Autoregressive-Type Time Series影響因子(影響力)學(xué)科排名




書目名稱Non-Gaussian Autoregressive-Type Time Series網(wǎng)絡(luò)公開度




書目名稱Non-Gaussian Autoregressive-Type Time Series網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Non-Gaussian Autoregressive-Type Time Series被引頻次




書目名稱Non-Gaussian Autoregressive-Type Time Series被引頻次學(xué)科排名




書目名稱Non-Gaussian Autoregressive-Type Time Series年度引用




書目名稱Non-Gaussian Autoregressive-Type Time Series年度引用學(xué)科排名




書目名稱Non-Gaussian Autoregressive-Type Time Series讀者反饋




書目名稱Non-Gaussian Autoregressive-Type Time Series讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:44:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:46:31 | 只看該作者
r properties of all models.Reviews the models available for .This book brings together a variety of non-Gaussian autoregressive-type models to analyze time-series data. This book collects and collates most of the available models in the field and provide their probabilistic and inferential propertie
地板
發(fā)表于 2025-3-22 06:13:08 | 只看該作者
5#
發(fā)表于 2025-3-22 09:22:00 | 只看該作者
ion-making processes (DMP) that conclude with the selection of optimal or satisfactory solutions require effective and efficient means of support. Spatial Decision Support Systems (SDSS) are computer systems developed to support DMP in which the problems have geographic dimensions and whose structur
6#
發(fā)表于 2025-3-22 14:38:59 | 只看該作者
7#
發(fā)表于 2025-3-22 17:37:01 | 只看該作者
d handle spatial data. The scientific modelling component, represented by mathematical models of natural physical processes, usually is implemented in SDSS through specific software subsystems. Especially in the last seven years there has been great scientific interest in SDSS accompanied by a proli
8#
發(fā)表于 2025-3-22 22:53:34 | 只看該作者
N. Balakrishnaqualitative data analysis was then performed. The findings demonstrate that in this case at least, espoused ‘shared understanding’ was limited. The paper also describes how further steps were successfully introduced which appear to improve the degree of mutual understanding.
9#
發(fā)表于 2025-3-23 05:07:43 | 只看該作者
10#
發(fā)表于 2025-3-23 09:28:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
项城市| 许昌市| 武冈市| 会泽县| 池州市| 卓资县| 浙江省| 凉城县| 英德市| 日喀则市| 瓦房店市| 武隆县| 斗六市| 抚州市| 宽甸| 丽水市| 曲阳县| 墨脱县| 梓潼县| 潜江市| 新余市| 岳普湖县| 伊金霍洛旗| 阿拉尔市| 凤凰县| 靖州| 界首市| 凤阳县| 上林县| 盘锦市| 东明县| 增城市| 尚义县| 大石桥市| 新建县| 潜江市| 桃江县| 宝兴县| 屯留县| 元阳县| 凤城市|