找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Gaussian Autoregressive-Type Time Series; N. Balakrishna Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive li

[復(fù)制鏈接]
查看: 16963|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:03:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Non-Gaussian Autoregressive-Type Time Series
編輯N. Balakrishna
視頻videohttp://file.papertrans.cn/667/666913/666913.mp4
概述Brings together a variety of non-Gaussian autoregressive-type models to analyze time-series data.Discusses the probabilistic and second-order properties of all models.Reviews the models available for
圖書(shū)封面Titlebook: Non-Gaussian Autoregressive-Type Time Series;  N. Balakrishna Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive li
描述.This book brings together a variety of non-Gaussian autoregressive-type models to analyze time-series data. This book collects and collates most of the available models in the field and provide their probabilistic and inferential properties. This book classifies the stationary time-series models into different groups such as linear stationary models with non-Gaussian innovations, linear stationary models with non-Gaussian marginal distributions, product autoregressive models and minification models. Even though several non-Gaussian time-series models are available in the literature, most of them are focusing on the model structure and the probabilistic properties..
出版日期Book 2021
關(guān)鍵詞non Gaussian time series; exponential autoregressive models; laplace autoregressive models; logistic au
版次1
doihttps://doi.org/10.1007/978-981-16-8162-2
isbn_softcover978-981-16-8164-6
isbn_ebook978-981-16-8162-2
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書(shū)目名稱Non-Gaussian Autoregressive-Type Time Series影響因子(影響力)




書(shū)目名稱Non-Gaussian Autoregressive-Type Time Series影響因子(影響力)學(xué)科排名




書(shū)目名稱Non-Gaussian Autoregressive-Type Time Series網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Non-Gaussian Autoregressive-Type Time Series網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Non-Gaussian Autoregressive-Type Time Series被引頻次




書(shū)目名稱Non-Gaussian Autoregressive-Type Time Series被引頻次學(xué)科排名




書(shū)目名稱Non-Gaussian Autoregressive-Type Time Series年度引用




書(shū)目名稱Non-Gaussian Autoregressive-Type Time Series年度引用學(xué)科排名




書(shū)目名稱Non-Gaussian Autoregressive-Type Time Series讀者反饋




書(shū)目名稱Non-Gaussian Autoregressive-Type Time Series讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:44:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:46:31 | 只看該作者
r properties of all models.Reviews the models available for .This book brings together a variety of non-Gaussian autoregressive-type models to analyze time-series data. This book collects and collates most of the available models in the field and provide their probabilistic and inferential propertie
地板
發(fā)表于 2025-3-22 06:13:08 | 只看該作者
5#
發(fā)表于 2025-3-22 09:22:00 | 只看該作者
ion-making processes (DMP) that conclude with the selection of optimal or satisfactory solutions require effective and efficient means of support. Spatial Decision Support Systems (SDSS) are computer systems developed to support DMP in which the problems have geographic dimensions and whose structur
6#
發(fā)表于 2025-3-22 14:38:59 | 只看該作者
7#
發(fā)表于 2025-3-22 17:37:01 | 只看該作者
d handle spatial data. The scientific modelling component, represented by mathematical models of natural physical processes, usually is implemented in SDSS through specific software subsystems. Especially in the last seven years there has been great scientific interest in SDSS accompanied by a proli
8#
發(fā)表于 2025-3-22 22:53:34 | 只看該作者
N. Balakrishnaqualitative data analysis was then performed. The findings demonstrate that in this case at least, espoused ‘shared understanding’ was limited. The paper also describes how further steps were successfully introduced which appear to improve the degree of mutual understanding.
9#
發(fā)表于 2025-3-23 05:07:43 | 只看該作者
10#
發(fā)表于 2025-3-23 09:28:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤翔县| 太白县| 樟树市| 布尔津县| 法库县| 松溪县| 云南省| 怀集县| 渭源县| 盱眙县| 宁海县| 资溪县| 宝清县| 溆浦县| 闵行区| 依安县| 拜泉县| 平山县| 宝清县| 大城县| 镇安县| 开阳县| 滨州市| 桐城市| 贵德县| 丁青县| 防城港市| 江北区| 丹江口市| 昌都县| 安吉县| 梁平县| 盐山县| 平江县| 宝应县| 唐河县| 泾源县| 临安市| 定安县| 长寿区| 道孚县|