找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Bloch Band Theory of Non-Hermitian Systems; Kazuki Yokomizo Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: EFFCT
21#
發(fā)表于 2025-3-25 04:54:27 | 只看該作者
Non-Hermitian Open Chain and Periodic Chain,el, we discuss how to determine the generalized Brillouin zone. Then we analytically show the difference between the energy spectrum under an open boundary condition and that under a periodic boundary condition, which is induced by the non-Hermitian skin effect.
22#
發(fā)表于 2025-3-25 09:19:08 | 只看該作者
Non-Bloch Band Theory in Bosonic Bogoliubov-de Gennes Systems,itian skin effect from the generalized Brillouin zone. As an example, we investigate the bosonic Kitaev-Majorana chain. We show that this system exhibits infinitesimal instability and reentrant behavior of the non-Hermitian skin effect.
23#
發(fā)表于 2025-3-25 13:44:15 | 只看該作者
Springer Theseshttp://image.papertrans.cn/n/image/666857.jpg
24#
發(fā)表于 2025-3-25 15:49:23 | 只看該作者
25#
發(fā)表于 2025-3-25 22:49:55 | 只看該作者
Introduction,In this chapter, we briefly review the history of studies on non-Hermitian systems. Then we point out the discovery of the non-Hermitian skin effect. Finally, we explain the organization of this thesis.
26#
發(fā)表于 2025-3-26 00:23:42 | 只看該作者
27#
發(fā)表于 2025-3-26 07:03:27 | 只看該作者
28#
發(fā)表于 2025-3-26 12:02:59 | 只看該作者
29#
發(fā)表于 2025-3-26 16:28:02 | 只看該作者
30#
發(fā)表于 2025-3-26 18:23:15 | 只看該作者
ployed with a double purpose: namely, to support iterative procedures employed in mapping specifications onto design parameters; and to allow for accurate behavioural time-domain simulation using MATLAB-like tools. The book is completed with two case studies corresponding to modulators for AM digital radio re978-1-4419-4950-9978-0-306-48194-9
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
积石山| 名山县| 新野县| 蛟河市| 大丰市| 林口县| 南康市| 黄龙县| 和政县| 广汉市| 依兰县| 武功县| 静海县| 阳西县| 太仆寺旗| 冕宁县| 宿迁市| 内江市| 竹北市| 双牌县| 贵阳市| 禹州市| 万载县| 贵定县| 宣武区| 阿城市| 凤凰县| 双流县| 河西区| 龙江县| 砀山县| 华宁县| 威海市| 泾阳县| 长宁区| 巨鹿县| 即墨市| 伊川县| 潮州市| 广宁县| 彝良县|