找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Bloch Band Theory of Non-Hermitian Systems; Kazuki Yokomizo Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復制鏈接]
查看: 31276|回復: 38
樓主
發(fā)表于 2025-3-21 16:06:20 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Non-Bloch Band Theory of Non-Hermitian Systems
編輯Kazuki Yokomizo
視頻videohttp://file.papertrans.cn/667/666857/666857.mp4
概述Nominated as an outstanding Ph.D. thesis by Tokyo Institute of Technology, Japan.Presents a way to calculate energy spectrum under the non-Hermitian skin effect.Explores bulk-edge correspondence topol
叢書名稱Springer Theses
圖書封面Titlebook: Non-Bloch Band Theory of Non-Hermitian Systems;  Kazuki Yokomizo Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive
描述.This book constructs a non-Bloch band theory and studies physics described by non-Hermitian Hamiltonian in terms of the theory proposed here..In non-Hermitian crystals, the author introduces the non-Bloch band theory which produces an energy spectrum in the limit of a large system size. The energy spectrum is then calculated from a generalized Brillouin zone for a complex Bloch wave number. While a generalized Brillouin zone becomes a unit circle on a complex plane in Hermitian systems, it becomes a circle with cusps in non-Hermitian systems. Such unique features of the generalized Brillouin zone realize remarkable phenomena peculiar in non-Hermitian systems.?.Further the author reveals rich aspects of non-Hermitian physics in terms of the non-Bloch band theory. First, a topological invariant defined by a generalized Brillouin zone implies the appearance of topological edge states. Second, a topological semimetal phase with exceptional points appears, The topological semimetal phase is unique to non-Hermitian systems because it is caused by the deformation of the generalized Brillouin zone by changes of system parameters. Third, the author reveals a certain relationship between th
出版日期Book 2022
關鍵詞Non-Hermitian Hamiltonian; Non-Hermitian Skin Effect; Non-Bloch Wave; Generalized Brillouin Zone; Bulk-E
版次1
doihttps://doi.org/10.1007/978-981-19-1858-2
isbn_softcover978-981-19-1860-5
isbn_ebook978-981-19-1858-2Series ISSN 2190-5053 Series E-ISSN 2190-5061
issn_series 2190-5053
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Non-Bloch Band Theory of Non-Hermitian Systems影響因子(影響力)




書目名稱Non-Bloch Band Theory of Non-Hermitian Systems影響因子(影響力)學科排名




書目名稱Non-Bloch Band Theory of Non-Hermitian Systems網(wǎng)絡公開度




書目名稱Non-Bloch Band Theory of Non-Hermitian Systems網(wǎng)絡公開度學科排名




書目名稱Non-Bloch Band Theory of Non-Hermitian Systems被引頻次




書目名稱Non-Bloch Band Theory of Non-Hermitian Systems被引頻次學科排名




書目名稱Non-Bloch Band Theory of Non-Hermitian Systems年度引用




書目名稱Non-Bloch Band Theory of Non-Hermitian Systems年度引用學科排名




書目名稱Non-Bloch Band Theory of Non-Hermitian Systems讀者反饋




書目名稱Non-Bloch Band Theory of Non-Hermitian Systems讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:33:47 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:24:44 | 只看該作者
地板
發(fā)表于 2025-3-22 05:05:12 | 只看該作者
5#
發(fā)表于 2025-3-22 12:30:12 | 只看該作者
6#
發(fā)表于 2025-3-22 13:58:51 | 只看該作者
Hermitian Systems and Non-Hermitian Systems,tem from a geometric phase. Then we review topological classifications in terms of the ten-fold Altland-Zirnbauer symmetry class. Next, we review the brief history of non-Hermitian physics. Then we explain that many intriguing phenomena originating from nontrivial degeneracies of energy eigenvalues
7#
發(fā)表于 2025-3-22 20:17:45 | 只看該作者
Non-Hermitian Open Chain and Periodic Chain,el, we discuss how to determine the generalized Brillouin zone. Then we analytically show the difference between the energy spectrum under an open boundary condition and that under a periodic boundary condition, which is induced by the non-Hermitian skin effect.
8#
發(fā)表于 2025-3-22 23:18:47 | 只看該作者
Non-Bloch Band Theory of Non-Hermitian Systems and Bulk-Edge Correspondence,zed Brillouin zone for the complex Bloch wave number. From the generalized Brillouin zone, we can calculate the energy spectra, which reproduce the band structure in an open chain of this system. As examples, we apply our theory to some models, and we explain remarkable features of the generalized B
9#
發(fā)表于 2025-3-23 03:35:02 | 只看該作者
10#
發(fā)表于 2025-3-23 07:58:15 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
岱山县| 舒兰市| 莱阳市| 扬州市| 晴隆县| 明光市| 定州市| 永济市| 平塘县| 凤阳县| 海宁市| 贡觉县| 菏泽市| 宽甸| 县级市| 彭水| 龙山县| 内江市| 黑山县| 龙陵县| 闽清县| 腾冲县| 巴楚县| 保德县| 余姚市| 衡东县| 双柏县| 尚志市| 常宁市| 新疆| 敦煌市| 石楼县| 虎林市| 鄂托克前旗| 沁水县| 通河县| 额尔古纳市| 永州市| 横峰县| 武义县| 南陵县|