找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Horizons in pro-p Groups; Marcus Sautoy,Dan Segal,Aner Shalev Book 2000 Springer Science+Business Media New York 2000 Finite.Group the

[復(fù)制鏈接]
樓主: 祈求
21#
發(fā)表于 2025-3-25 05:37:15 | 只看該作者
Subgroup Growth in pro-, Groups,y generated, either as an abstract or as a profinite group, then ... finite. The study of the series ..., a subject that is known as .,was begun by Hurwitz in the 19th century, with geometric motivation, and has become an active area of research in recent years. Let us mention, e.g., that a pro-. Gr
22#
發(fā)表于 2025-3-25 08:55:18 | 只看該作者
Zeta Functions of Groups,re an uncannily powerful tool in number theory; to mention just some celebrated examples, they are at the heart of the proofs of the Prime Number Theorem, Dirichlet’s theorem on primes in arithmetic progressions, and the main theorems (in their original form) of class field theory, not to mention th
23#
發(fā)表于 2025-3-25 12:04:24 | 只看該作者
,-adic Galois Representations and pro-, Galois Groups,ation passes in both directions. Algebraic geometry, for instance in the guise of elliptic curves and modular forms, yields naturally occurring Galois representations, whereas on the other side, co-homological techniques and variants on class field theory tell us about the generators and relations o
24#
發(fā)表于 2025-3-25 17:59:45 | 只看該作者
25#
發(fā)表于 2025-3-25 21:45:49 | 只看該作者
26#
發(fā)表于 2025-3-26 01:19:32 | 只看該作者
27#
發(fā)表于 2025-3-26 06:27:31 | 只看該作者
Book 2000 must be based. The chapters cover a wide range. In order to ensure the most authoritative account, we have arranged for each chapter to be written by a leading contributor (or contributors) to the topic in question. Pro-p groups appear in several different, though sometimes overlapping, contexts.
28#
發(fā)表于 2025-3-26 10:37:58 | 只看該作者
29#
發(fā)表于 2025-3-26 12:44:39 | 只看該作者
0743-1643 written by a leading contributor (or contributors) to the topic in question. Pro-p groups appear in several different, though sometimes overlapping, contexts.978-1-4612-7122-2978-1-4612-1380-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
30#
發(fā)表于 2025-3-26 17:14:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巢湖市| 观塘区| 玉环县| 察雅县| 宁海县| 民权县| 寿阳县| 莲花县| 阿坝县| 玛纳斯县| 临泉县| 大宁县| 桑日县| 南和县| 锡林郭勒盟| 罗定市| 随州市| 静海县| 长丰县| 广灵县| 平远县| 连州市| 特克斯县| 马龙县| 通城县| 石棉县| 吴旗县| 葵青区| 舟曲县| 息烽县| 永登县| 清涧县| 宁阳县| 三河市| 蒙山县| 岢岚县| 松江区| 张掖市| 剑川县| 兰州市| 比如县|