找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Horizons in pro-p Groups; Marcus Sautoy,Dan Segal,Aner Shalev Book 2000 Springer Science+Business Media New York 2000 Finite.Group the

[復(fù)制鏈接]
樓主: 祈求
11#
發(fā)表于 2025-3-23 12:14:32 | 只看該作者
12#
發(fā)表于 2025-3-23 16:02:15 | 只看該作者
13#
發(fā)表于 2025-3-23 21:08:47 | 只看該作者
Peter Symonds,Thomas Weigeler with a nondegenerate ground state. The characteristic features in the excitations in the two groups are summarized. The ultrafast dynamic was studied for three different poly(phenylacetylene)s (PPAs) with weakly-nondegenerate ground state to clarify the transition of the nonlinear properties betw
14#
發(fā)表于 2025-3-24 01:09:38 | 只看該作者
15#
發(fā)表于 2025-3-24 03:14:26 | 只看該作者
Lie Methods in the Theory of pro-, Groups,bjects, such as finite .-groups and residually finite groups. Aspects of this topic feature in several books and survey papers; see for instance [62], [45] Chapter VIII, [42], [137], [27], [57], [58], [148], [121]. In this survey I will try to focus on the most recent developments and applications,
16#
發(fā)表于 2025-3-24 07:10:11 | 只看該作者
17#
發(fā)表于 2025-3-24 13:28:23 | 只看該作者
18#
發(fā)表于 2025-3-24 16:59:12 | 只看該作者
On Just Infinite Abstract and Profinite Groups,osed normal subgroups have finite index. Just infinite groups have arisen in a variety of contexts. The abstract just infinite groups having non-trivial abelian normal subgroups are precisely the space groups whose point groups act rationally irreducibly on the abelian normal subgroups (see McCarthy
19#
發(fā)表于 2025-3-24 21:11:53 | 只看該作者
The Nottingham Group,ocal field.(where ..., this finitely generated pro-. Groups..was introduced to the group theory community in the work of D. Johnson [13] (himself inspired by an article of S. Jennings [12]) and his Ph.D. student I. York [26] [27]. Viewing . as a group of formal power series under substitution, D. Jo
20#
發(fā)表于 2025-3-25 00:50:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 03:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平南县| 克东县| 准格尔旗| 普宁市| 塘沽区| 额济纳旗| 乐平市| 沅陵县| 舞钢市| 儋州市| 林州市| 东乡县| 辽中县| 兴城市| 柯坪县| 乐山市| 九龙城区| 遵义县| 西峡县| 攀枝花市| 怀远县| 龙胜| 蚌埠市| 广州市| 翁牛特旗| 广东省| 北碚区| 凉山| 兴安盟| 响水县| 大埔县| 库尔勒市| 固镇县| 仙居县| 沾益县| 科尔| 台东县| 阿合奇县| 江达县| 文山县| 宁远县|