找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Horizons in Evolutionary Robotics; Extended Contributio Stéphane Doncieux,Nicolas Bredèche,Jean-Baptiste M Conference proceedings 2011

[復(fù)制鏈接]
樓主: Filament
31#
發(fā)表于 2025-3-26 21:29:26 | 只看該作者
Evolutionary Algorithms in the Design of Complex Robotic Systemsing into account in particular the variability of the environments in which they are intended to evolve constitutes challenges for the research in design. The needs in terms of rationality and efficiency in these new challenges for robotic engineering lead the development of systems to assist engine
32#
發(fā)表于 2025-3-27 01:15:52 | 只看該作者
33#
發(fā)表于 2025-3-27 09:07:40 | 只看該作者
Evolutionary Algorithms to Analyse and Design a Controller for a Flapping Wings Aircraft and, on this basis, propose a controller for a complex robotics system: a flapping wings aircraft. A multi-objective optimization is performed to find the best parameters of sinusoidal wings kinematics. Multi-objective algorithms generate a set of trade-off solutions instead of a single solution. T
34#
發(fā)表于 2025-3-27 12:33:03 | 只看該作者
On Applying Neuroevolutionary Methods to Complex Robotic Tasksevolve controllers for complex robotic tasks. The first problem is the large number of evaluations required to obtain a solution. We propose that this problem can be addressed by accelerating neuroevolutionary methods using a Kalman filter. The second problem is the difficulty of obtaining a desirab
35#
發(fā)表于 2025-3-27 17:25:11 | 只看該作者
Evolutionary Design of a Robotic Manipulator for a Highly Constrained Environment lead to resort to evolutionary-aided design techniques. As the solution space is likely to be shaped strangely due to the particular environment, a special attention is paid to support the algorithm exploration and avoid negative impacts from the problem formulation, the fitness function or the eva
36#
發(fā)表于 2025-3-27 21:13:46 | 只看該作者
A Multi-cellular Based Self-organizing Approach for Distributed Multi-Robot Systemsganizing multi-robot system for pattern formation. In our approach, multiple robots are able to self-organize themselves into various patterns driven by the dynamics of a gene regulatory network model. The pattern information is embedded into the gene regulation model, analog to the morphogen gradie
37#
發(fā)表于 2025-3-28 01:50:11 | 只看該作者
Novelty-Based Multiobjectivizationbehaviors instead of the efficiency. However, abandoning the efficiency objective(s) may be too radical in many contexts. In this paper, a Pareto-based multi-objective evolutionary algorithmis employed to reconcile novelty search with objective-based optimization by following a multiobjectivization
38#
發(fā)表于 2025-3-28 03:38:59 | 只看該作者
39#
發(fā)表于 2025-3-28 09:37:25 | 只看該作者
40#
發(fā)表于 2025-3-28 11:42:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
稻城县| 南安市| 招远市| 扎赉特旗| 阜平县| 高陵县| 文登市| 襄樊市| 茌平县| 江华| 湛江市| 琼结县| 偏关县| 友谊县| 汤原县| 吉安市| 岳阳市| 邵阳县| 凤城市| 淳安县| 六安市| 蚌埠市| 普宁市| 乌拉特前旗| 惠水县| 梧州市| 石景山区| 仁布县| 灵丘县| 甘孜县| 商河县| 福海县| 西华县| 永济市| 安仁县| 咸阳市| 佛教| 永康市| 惠安县| 临海市| 阳山县|