找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Frontiers in Mining Complex Patterns; Third International Annalisa Appice,Michelangelo Ceci,Zbigniew W. Ras Conference proceedings 201

[復制鏈接]
查看: 15385|回復: 52
樓主
發(fā)表于 2025-3-21 17:52:57 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱New Frontiers in Mining Complex Patterns
副標題Third International
編輯Annalisa Appice,Michelangelo Ceci,Zbigniew W. Ras
視頻videohttp://file.papertrans.cn/666/665286/665286.mp4
概述Up-to-date results.Fast track conference proceedings.State-of-the-art report.Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: New Frontiers in Mining Complex Patterns; Third International  Annalisa Appice,Michelangelo Ceci,Zbigniew W. Ras Conference proceedings 201
描述This book constitutes the thoroughly refereed post-conference proceedings of the Third International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2014, held in conjunction with ECML-PKDD 2014 in Nancy, France, in September 2014.The 13 revised full papers presented were carefully reviewed and selected from numerous submissions. They illustrate advanced data mining techniques which preserve the informative richness of complex data and allow for efficient and effective identification of complex information units present in such data. The papers are organized in the following sections: classification and regression; clustering; data streams and sequences; applications.
出版日期Conference proceedings 2015
關鍵詞classification; clustering; data mining; feature selection; machine learning; network models; semantic sim
版次1
doihttps://doi.org/10.1007/978-3-319-17876-9
isbn_softcover978-3-319-17875-2
isbn_ebook978-3-319-17876-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱New Frontiers in Mining Complex Patterns影響因子(影響力)




書目名稱New Frontiers in Mining Complex Patterns影響因子(影響力)學科排名




書目名稱New Frontiers in Mining Complex Patterns網(wǎng)絡公開度




書目名稱New Frontiers in Mining Complex Patterns網(wǎng)絡公開度學科排名




書目名稱New Frontiers in Mining Complex Patterns被引頻次




書目名稱New Frontiers in Mining Complex Patterns被引頻次學科排名




書目名稱New Frontiers in Mining Complex Patterns年度引用




書目名稱New Frontiers in Mining Complex Patterns年度引用學科排名




書目名稱New Frontiers in Mining Complex Patterns讀者反饋




書目名稱New Frontiers in Mining Complex Patterns讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:19:44 | 只看該作者
New Frontiers in Mining Complex Patterns978-3-319-17876-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
板凳
發(fā)表于 2025-3-22 01:55:43 | 只看該作者
地板
發(fā)表于 2025-3-22 05:21:37 | 只看該作者
5#
發(fā)表于 2025-3-22 11:21:49 | 只看該作者
6#
發(fā)表于 2025-3-22 15:54:38 | 只看該作者
Mining Positional Data Streamsicable in our continuous setting. We propose an efficient trajectory-based preprocessing to identify similar movements and a distributed pattern mining algorithm to identify frequent trajectories. We empirically evaluate all parts of the processing pipeline.
7#
發(fā)表于 2025-3-22 17:13:24 | 只看該作者
Semi-supervised Learning for Multi-target Regressioni-target regression (MTR), a?type of structured output prediction, where the output space consists of multiple numerical values. Our main objective is to investigate whether we can improve over supervised methods for MTR by using unlabeled data. We use ensembles of predictive clustering trees in a s
8#
發(fā)表于 2025-3-22 23:34:02 | 只看該作者
Evaluation of Different Data-Derived Label Hierarchies in Multi-label Classificationy using four different clustering algorithms (balanced .-means, agglomerative clustering with single and complete linkage and predictive clustering trees). The hierarchies are then used in conjunction with global hierarchical multi-label classification (HMC) approaches. The results from the statisti
9#
發(fā)表于 2025-3-23 01:43:26 | 只看該作者
Predicting Negative Side Effects of Surgeries Through Clustering We propose a system that measures the similarity of a new patient to existing clusters, and makes a personalized decision on the patient’s most likely negative side effects. We further evaluate our system using SID, which is part of the Healthcare Cost and Utilization Project (HCUP). Our experiment
10#
發(fā)表于 2025-3-23 07:48:02 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
闸北区| 濮阳市| 深水埗区| 乌什县| 双辽市| 高州市| 潮州市| 鄂尔多斯市| 岳普湖县| 西盟| 昭通市| 嘉禾县| 红原县| 涡阳县| 临泽县| 嘉禾县| 庆城县| 平泉县| 广宁县| 通城县| 郸城县| 双鸭山市| 于田县| 彭州市| 常州市| 彭山县| 余姚市| 哈密市| 嘉祥县| 互助| 塔城市| 沿河| 中牟县| 敦煌市| 延安市| 邳州市| 阿巴嘎旗| 广东省| 靖远县| 榆树市| 长春市|