找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Frontiers in Mining Complex Patterns; Third International Annalisa Appice,Michelangelo Ceci,Zbigniew W. Ras Conference proceedings 201

[復(fù)制鏈接]
查看: 15387|回復(fù): 52
樓主
發(fā)表于 2025-3-21 17:52:57 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱New Frontiers in Mining Complex Patterns
副標(biāo)題Third International
編輯Annalisa Appice,Michelangelo Ceci,Zbigniew W. Ras
視頻videohttp://file.papertrans.cn/666/665286/665286.mp4
概述Up-to-date results.Fast track conference proceedings.State-of-the-art report.Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: New Frontiers in Mining Complex Patterns; Third International  Annalisa Appice,Michelangelo Ceci,Zbigniew W. Ras Conference proceedings 201
描述This book constitutes the thoroughly refereed post-conference proceedings of the Third International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2014, held in conjunction with ECML-PKDD 2014 in Nancy, France, in September 2014.The 13 revised full papers presented were carefully reviewed and selected from numerous submissions. They illustrate advanced data mining techniques which preserve the informative richness of complex data and allow for efficient and effective identification of complex information units present in such data. The papers are organized in the following sections: classification and regression; clustering; data streams and sequences; applications.
出版日期Conference proceedings 2015
關(guān)鍵詞classification; clustering; data mining; feature selection; machine learning; network models; semantic sim
版次1
doihttps://doi.org/10.1007/978-3-319-17876-9
isbn_softcover978-3-319-17875-2
isbn_ebook978-3-319-17876-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱New Frontiers in Mining Complex Patterns影響因子(影響力)




書目名稱New Frontiers in Mining Complex Patterns影響因子(影響力)學(xué)科排名




書目名稱New Frontiers in Mining Complex Patterns網(wǎng)絡(luò)公開度




書目名稱New Frontiers in Mining Complex Patterns網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱New Frontiers in Mining Complex Patterns被引頻次




書目名稱New Frontiers in Mining Complex Patterns被引頻次學(xué)科排名




書目名稱New Frontiers in Mining Complex Patterns年度引用




書目名稱New Frontiers in Mining Complex Patterns年度引用學(xué)科排名




書目名稱New Frontiers in Mining Complex Patterns讀者反饋




書目名稱New Frontiers in Mining Complex Patterns讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:19:44 | 只看該作者
New Frontiers in Mining Complex Patterns978-3-319-17876-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
板凳
發(fā)表于 2025-3-22 01:55:43 | 只看該作者
地板
發(fā)表于 2025-3-22 05:21:37 | 只看該作者
5#
發(fā)表于 2025-3-22 11:21:49 | 只看該作者
6#
發(fā)表于 2025-3-22 15:54:38 | 只看該作者
Mining Positional Data Streamsicable in our continuous setting. We propose an efficient trajectory-based preprocessing to identify similar movements and a distributed pattern mining algorithm to identify frequent trajectories. We empirically evaluate all parts of the processing pipeline.
7#
發(fā)表于 2025-3-22 17:13:24 | 只看該作者
Semi-supervised Learning for Multi-target Regressioni-target regression (MTR), a?type of structured output prediction, where the output space consists of multiple numerical values. Our main objective is to investigate whether we can improve over supervised methods for MTR by using unlabeled data. We use ensembles of predictive clustering trees in a s
8#
發(fā)表于 2025-3-22 23:34:02 | 只看該作者
Evaluation of Different Data-Derived Label Hierarchies in Multi-label Classificationy using four different clustering algorithms (balanced .-means, agglomerative clustering with single and complete linkage and predictive clustering trees). The hierarchies are then used in conjunction with global hierarchical multi-label classification (HMC) approaches. The results from the statisti
9#
發(fā)表于 2025-3-23 01:43:26 | 只看該作者
Predicting Negative Side Effects of Surgeries Through Clustering We propose a system that measures the similarity of a new patient to existing clusters, and makes a personalized decision on the patient’s most likely negative side effects. We further evaluate our system using SID, which is part of the Healthcare Cost and Utilization Project (HCUP). Our experiment
10#
發(fā)表于 2025-3-23 07:48:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家港市| 绍兴县| 汉川市| 文成县| 金溪县| 武鸣县| 五大连池市| 门头沟区| 庄河市| 盘锦市| 陵川县| 津南区| 德钦县| 潼关县| 眉山市| 淮南市| 西乌珠穆沁旗| 荔波县| 济源市| 紫金县| 长汀县| 历史| 邛崃市| 平顺县| 当阳市| 井陉县| 永顺县| 中宁县| 上虞市| 深圳市| 隆尧县| 潜山县| 资兴市| 黄陵县| 轮台县| 苗栗市| 准格尔旗| 和顺县| 临夏县| 阿瓦提县| 祁连县|