找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Directions in Mathematical Fluid Mechanics; The Alexander V. Kaz Andrei V. Fursikov,Giovanni P. Galdi,Vladislav V. Book 2010 Birkh?use

[復(fù)制鏈接]
樓主: Gullet
11#
發(fā)表于 2025-3-23 11:20:31 | 只看該作者
12#
發(fā)表于 2025-3-23 16:52:51 | 只看該作者
13#
發(fā)表于 2025-3-23 19:58:26 | 只看該作者
New Perspectives in Fluid Dynamics: Mathematical Analysis of a Model Proposed by Howard Brenner, system of partial differential equations possesses global-in-time weak solutions for any finite energy initial data. In addition, the density of the fluid remains positive a.a. in the physical domain on any finite time interval.
14#
發(fā)表于 2025-3-23 23:42:45 | 只看該作者
Optimal Neumann Control for the Two-dimensional Steady-state Navier-Stokes equations,acts at a part of the boundary which is contiguous to the rigid boundary where the no-slip condition holds. Further, certain constraints are imposed on the control and the phase variable. We derive an existence theorem as well as the corresponding optimality system
15#
發(fā)表于 2025-3-24 04:04:56 | 只看該作者
On Some Boundary Value Problem for the Stokes Equations with a Parameter in an Infinite Sector,, we are concerned in this paper with the boundary value problem for the stationary Stokes equations with a parameter in an infinite sector with the slip and the stress boundary conditions. Existence of the unique solution is proved in weighted Sobolev spaces.
16#
發(fā)表于 2025-3-24 08:54:23 | 只看該作者
17#
發(fā)表于 2025-3-24 13:56:17 | 只看該作者
18#
發(fā)表于 2025-3-24 16:56:54 | 只看該作者
New Directions in Mathematical Fluid Mechanics978-3-0346-0152-8Series ISSN 2297-0320 Series E-ISSN 2297-0339
19#
發(fā)表于 2025-3-24 20:51:28 | 只看該作者
Andrei V. Fursikov,Giovanni P. Galdi,Vladislav V. Contributions by leading experts in the field of mathematical physics and mathematical fluid mechanics.The state of the art of a broad range of topics is presented.Dedicated to the memory of A.V. Kazh
20#
發(fā)表于 2025-3-25 02:56:33 | 只看該作者
,Homogenization of the Poisson—Boltzmann Equation,By the homogenization approach we justify a two-scale model of ion equilibrium between solid layers. By up-scaling, the electric potential equation in nanoslits separated by thin solid layers is approximated by a homogenized macroscale equation in the form of the Poisson equation for an induced vertical electrical field.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通江县| 闸北区| 无极县| 长宁县| 溆浦县| 长沙市| 西贡区| 和政县| 丹东市| 木里| 齐河县| 莲花县| 临邑县| 靖江市| 女性| 永川市| 开封县| 苗栗市| 永德县| 开江县| 嘉兴市| 嘉义市| 德清县| 琼海市| 满城县| 宜良县| 准格尔旗| 阿图什市| 怀化市| 田阳县| 两当县| 漳州市| 申扎县| 环江| 丽水市| 京山县| 若羌县| 安吉县| 南和县| 凌海市| 鲜城|