找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Directions in Mathematical Fluid Mechanics; The Alexander V. Kaz Andrei V. Fursikov,Giovanni P. Galdi,Vladislav V. Book 2010 Birkh?use

[復(fù)制鏈接]
查看: 16328|回復(fù): 62
樓主
發(fā)表于 2025-3-21 16:43:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱New Directions in Mathematical Fluid Mechanics
副標(biāo)題The Alexander V. Kaz
編輯Andrei V. Fursikov,Giovanni P. Galdi,Vladislav V.
視頻videohttp://file.papertrans.cn/666/665106/665106.mp4
概述Contributions by leading experts in the field of mathematical physics and mathematical fluid mechanics.The state of the art of a broad range of topics is presented.Dedicated to the memory of A.V. Kazh
叢書名稱Advances in Mathematical Fluid Mechanics
圖書封面Titlebook: New Directions in Mathematical Fluid Mechanics; The Alexander V. Kaz Andrei V. Fursikov,Giovanni P. Galdi,Vladislav V.  Book 2010 Birkh?use
描述On November 3, 2005, Alexander Vasil’evich Kazhikhov left this world, untimely and unexpectedly. He was one of the most in?uential mathematicians in the mechanics of ?uids, and will be remembered for his outstanding results that had, and still have, a c- siderablysigni?cantin?uenceinthe?eld.Amonghis manyachievements,werecall that he was the founder of the modern mathematical theory of the Navier-Stokes equations describing one- and two-dimensional motions of a viscous, compressible and heat-conducting gas. A brief account of Professor Kazhikhov’s contributions to science is provided in the following article “Scienti?c portrait of Alexander Vasil’evich Kazhikhov”. This volume is meant to be an expression of high regard to his memory, from most of his friends and his colleagues. In particular, it collects a selection of papers that represent the latest progress in a number of new important directions of Mathematical Physics, mainly of Mathematical Fluid Mechanics. These papers are written by world renowned specialists. Most of them were friends, students or colleagues of Professor Kazhikhov, who either worked with him directly, or met him many times in o?cial scienti?c meetings, wher
出版日期Book 2010
關(guān)鍵詞Boundary Control Problems; Euler Equations; Lagrangian Method; Mathematical physics; Navier-Stokes equat
版次1
doihttps://doi.org/10.1007/978-3-0346-0152-8
isbn_ebook978-3-0346-0152-8Series ISSN 2297-0320 Series E-ISSN 2297-0339
issn_series 2297-0320
copyrightBirkh?user Basel 2010
The information of publication is updating

書目名稱New Directions in Mathematical Fluid Mechanics影響因子(影響力)




書目名稱New Directions in Mathematical Fluid Mechanics影響因子(影響力)學(xué)科排名




書目名稱New Directions in Mathematical Fluid Mechanics網(wǎng)絡(luò)公開度




書目名稱New Directions in Mathematical Fluid Mechanics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱New Directions in Mathematical Fluid Mechanics被引頻次




書目名稱New Directions in Mathematical Fluid Mechanics被引頻次學(xué)科排名




書目名稱New Directions in Mathematical Fluid Mechanics年度引用




書目名稱New Directions in Mathematical Fluid Mechanics年度引用學(xué)科排名




書目名稱New Directions in Mathematical Fluid Mechanics讀者反饋




書目名稱New Directions in Mathematical Fluid Mechanics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:31:24 | 只看該作者
,Finite-dimensional Control for the Navier—Stokes Equations,ontrol is selected from this subspace too. On the basis of estimates of the solution for the subdifferential Cauchy problem for a Navier—Stokes system, controllability of the flow is proven on the condition that the norm of the control is minimal.
板凳
發(fā)表于 2025-3-22 04:15:56 | 只看該作者
地板
發(fā)表于 2025-3-22 05:13:14 | 只看該作者
Boundary Control Problems for Stationary Equations of Heat Convection,. Numerical algorithm based on Newton’s method for the optimality system and finite element method for linearized boundary value problems is proposed. Some computational results connected with the vortex reduction in the backward-facing-step channel by means of the heat flux on a part of the boundary are given and analyzed.
5#
發(fā)表于 2025-3-22 09:51:00 | 只看該作者
6#
發(fā)表于 2025-3-22 14:47:46 | 只看該作者
7#
發(fā)表于 2025-3-22 20:52:29 | 只看該作者
On the Sharp Vanishing Viscosity Limit of Viscous Incompressible Fluid Flows,ce .([0, .];. .). This convergence result, in the strong topology, is due to T. Kato, see [.]. We show here a very elementary proof. We assume, together with the convergence of . to zero, the convergence of the initial data in the . . norm.
8#
發(fā)表于 2025-3-22 23:35:31 | 只看該作者
9#
發(fā)表于 2025-3-23 04:36:30 | 只看該作者
Viscous Flows in Domains with a Multiply Connected Boundary,also intersects each component of the boundary. Having available this estimate, we prove an existence theorem for the axially symmetric problem in a domain with a multiply connected boundary. We consider also the problem in a curvilinear ring and formulate a conditional result concerning its solvability.
10#
發(fā)表于 2025-3-23 05:34:11 | 只看該作者
Advances in Mathematical Fluid Mechanicshttp://image.papertrans.cn/n/image/665106.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浦县| 忻州市| 潼关县| 天津市| 成安县| 昌平区| 乐都县| 囊谦县| 阜平县| 龙南县| 临颍县| 永福县| 桦川县| 竹山县| 云霄县| 玛多县| 长沙市| 奉节县| 鄂伦春自治旗| 恭城| 商洛市| 多伦县| 三门峡市| 临沭县| 许昌县| 青冈县| 德钦县| 宁都县| 杭锦后旗| 彭水| 安化县| 顺义区| 华池县| 新余市| 民权县| 宁河县| 馆陶县| 夏津县| 漳平市| 汽车| 长治县|