找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Developments in Lie Theory and Their Applications; Juan Tirao,Nolan R. Wallach Book 1992 Birkh?user Boston 1992 algebra.lie group.repr

[復(fù)制鏈接]
樓主: affidavit
51#
發(fā)表于 2025-3-30 09:40:54 | 只看該作者
,Some Zeta Functions Attached to ΓG/K,n . of Γ he assigned a certain remarkable analytic function Z.(?, .) (of one complex variable) whose zeros, for example, capture both topological and spectral properties of the space form Γ./. where .= SO(2). Z.(?, .), now called the ., satisfies a functional equation . → 1 → . (involving Harish-Cha
52#
發(fā)表于 2025-3-30 13:29:34 | 只看該作者
53#
發(fā)表于 2025-3-30 19:19:08 | 只看該作者
Unitary Representations of Reductive Lie Groups and the Orbit Method,ge enough to solve a range of interesting harmonic analysis problems. The Kirillov-Kostant philosophy of coadjoint orbits seeks to provide such a family. The purpose of these notes is to describe what is known about implementing that philosophy, particularly for reductive groups.
54#
發(fā)表于 2025-3-30 20:44:16 | 只看該作者
55#
發(fā)表于 2025-3-31 02:21:27 | 只看該作者
56#
發(fā)表于 2025-3-31 05:38:00 | 只看該作者
,The Vanishing of Scalar Curvature on 6 Manifolds, Einstein’s Equation, and Representation Theory,operate on g by the adjoint representation and on g* by the so-called coadjoint representation. Moreover, set .. = .(g). Since the bilinear form (., .) = .(.) on g × g is nonsingular, we can identify g and g*, which we shall do whenever it is convenient.
57#
發(fā)表于 2025-3-31 11:26:28 | 只看該作者
58#
發(fā)表于 2025-3-31 13:35:41 | 只看該作者
59#
發(fā)表于 2025-3-31 18:50:48 | 只看該作者
,Some Zeta Functions Attached to ΓG/K,spectral properties of the space form Γ./. where .= SO(2). Z.(?, .), now called the ., satisfies a functional equation . → 1 → . (involving Harish-Chandra’s .-function) and, up to finite exceptions involving the possible occurrence of . representations of . in .. (Γ.), ..(?,.) satisfies a .: its “nontrivial” zeros have real part equal ?.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 15:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄石市| 苍梧县| 香港 | 都匀市| 墨竹工卡县| 固阳县| 麟游县| 丰原市| 平南县| 阜城县| 靖西县| 永善县| 盘山县| 高清| 潜江市| 临泉县| 织金县| 蕉岭县| 定襄县| 马山县| 七台河市| 中超| 怀宁县| 东丽区| 和林格尔县| 平乡县| 平塘县| 永平县| 绍兴县| 炉霍县| 临夏县| 延津县| 柳州市| 大新县| 杂多县| 天镇县| 原平市| 新民市| 柳林县| 太谷县| 葫芦岛市|