找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Developments in Lie Theory and Their Applications; Juan Tirao,Nolan R. Wallach Book 1992 Birkh?user Boston 1992 algebra.lie group.repr

[復(fù)制鏈接]
查看: 55808|回復(fù): 58
樓主
發(fā)表于 2025-3-21 18:12:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)New Developments in Lie Theory and Their Applications
編輯Juan Tirao,Nolan R. Wallach
視頻videohttp://file.papertrans.cn/666/665019/665019.mp4
叢書(shū)名稱(chēng)Progress in Mathematics
圖書(shū)封面Titlebook: New Developments in Lie Theory and Their Applications;  Juan Tirao,Nolan R. Wallach Book 1992 Birkh?user Boston 1992 algebra.lie group.repr
描述Representation theory, and more generally Lie theory, has played a very important role in many of the recent developments of mathematics and in the interaction of mathematics with physics. In August-September 1989, a workshop (Third Workshop on Representation Theory of Lie Groups and its Applications) was held in the environs of C6rdoba, Argentina to present expositions of important recent developments in the field that would be accessible to graduate students and researchers in related fields. This volume contains articles that are edited versions of the lectures (and short courses) given at the workshop. Within representation theory, one of the main open problems is to determine the unitary dual of a real reductive group. Although this prob- lem is as yet unsolved, the recent work of Barbasch, Vogan, Arthur as well as others has shed new light on the structure of the problem. The article of D. Vogan presents an exposition of some aspects of this prob- lem, emphasizing an extension of the orbit method of Kostant, Kirillov. Several examples are given that explain why the orbit method should be extended and how this extension should be implemented.
出版日期Book 1992
關(guān)鍵詞algebra; lie group; representation theory
版次1
doihttps://doi.org/10.1007/978-1-4612-2978-0
isbn_softcover978-1-4612-7743-9
isbn_ebook978-1-4612-2978-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Boston 1992
The information of publication is updating

書(shū)目名稱(chēng)New Developments in Lie Theory and Their Applications影響因子(影響力)




書(shū)目名稱(chēng)New Developments in Lie Theory and Their Applications影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)New Developments in Lie Theory and Their Applications網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)New Developments in Lie Theory and Their Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)New Developments in Lie Theory and Their Applications被引頻次




書(shū)目名稱(chēng)New Developments in Lie Theory and Their Applications被引頻次學(xué)科排名




書(shū)目名稱(chēng)New Developments in Lie Theory and Their Applications年度引用




書(shū)目名稱(chēng)New Developments in Lie Theory and Their Applications年度引用學(xué)科排名




書(shū)目名稱(chēng)New Developments in Lie Theory and Their Applications讀者反饋




書(shū)目名稱(chēng)New Developments in Lie Theory and Their Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:21:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:26:36 | 只看該作者
地板
發(fā)表于 2025-3-22 07:35:55 | 只看該作者
On Spherical Modules,Let . be a group, . a finite dimensional complex vector space and . : . → .(.) a representation. Let us denote by . the ring of all polynomial functions on .; clearly . acts on .(.). The main problem of the classical invariant theory can be phrased as follows: To find explicitly all the .-invariant polynomial functions on ..
5#
發(fā)表于 2025-3-22 11:22:37 | 只看該作者
Generalized Weil Representations for SL(n,k), n odd, k a Finite Field,Generalized Weil representations for the group . = SL(.), . a finite field, are constructed by contraction of a suitable complex .-vector bundle with the help of an appropriate connection. This extends a previous construction by the authors for the case where . is even, obtained with the help of “Grassmann-Heisenberg” groups.
6#
發(fā)表于 2025-3-22 12:56:25 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/n/image/665019.jpg
7#
發(fā)表于 2025-3-22 19:39:44 | 只看該作者
8#
發(fā)表于 2025-3-22 23:20:36 | 只看該作者
9#
發(fā)表于 2025-3-23 03:08:47 | 只看該作者
10#
發(fā)表于 2025-3-23 05:35:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邳州市| 扶沟县| 兴宁市| 集贤县| 丹寨县| 二连浩特市| 孟连| 临桂县| 平顺县| 淮安市| 福贡县| 乐业县| 开封市| 台南县| 家居| 重庆市| 大同县| 闻喜县| 武城县| 博罗县| 德清县| 安岳县| 壤塘县| 义马市| 万源市| 城口县| 合肥市| 佛教| 靖江市| 黄陵县| 泸溪县| 金溪县| 康马县| 张北县| 临邑县| 资溪县| 锦屏县| 临夏县| 泊头市| 电白县| 巨鹿县|