找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural-Symbolic Learning and Reasoning; 18th International C Tarek R. Besold,Artur d’Avila Garcez,Benedikt Wagn Conference proceedings 2024

[復(fù)制鏈接]
查看: 15313|回復(fù): 60
樓主
發(fā)表于 2025-3-21 16:56:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Neural-Symbolic Learning and Reasoning
副標(biāo)題18th International C
編輯Tarek R. Besold,Artur d’Avila Garcez,Benedikt Wagn
視頻videohttp://file.papertrans.cn/664/663767/663767.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Neural-Symbolic Learning and Reasoning; 18th International C Tarek R. Besold,Artur d’Avila Garcez,Benedikt Wagn Conference proceedings 2024
描述.This book constitutes the refereed proceedings of the 18th International Conference on Neural-Symbolic Learning and Reasoning, NeSy 2024, held in Barcelona, Spain during September 9-12th, 2024...The 30 full papers and 18 short papers were carefully reviewed and selected from 89 submissions, which presented the latest and ongoing research work on neurosymbolic AI.?Neurosymbolic AI aims to build rich computational models and systems by combining neural and symbolic learning and reasoning paradigms. This combination hopes to form synergies among their strengths while overcoming their.complementary weaknesses..
出版日期Conference proceedings 2024
關(guān)鍵詞Neurosymbolic Artificial Intelligence; Hybrid Learning and Reasoning Systems; Artificial intelligence;
版次1
doihttps://doi.org/10.1007/978-3-031-71170-1
isbn_softcover978-3-031-71169-5
isbn_ebook978-3-031-71170-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Neural-Symbolic Learning and Reasoning影響因子(影響力)




書目名稱Neural-Symbolic Learning and Reasoning影響因子(影響力)學(xué)科排名




書目名稱Neural-Symbolic Learning and Reasoning網(wǎng)絡(luò)公開度




書目名稱Neural-Symbolic Learning and Reasoning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Neural-Symbolic Learning and Reasoning被引頻次




書目名稱Neural-Symbolic Learning and Reasoning被引頻次學(xué)科排名




書目名稱Neural-Symbolic Learning and Reasoning年度引用




書目名稱Neural-Symbolic Learning and Reasoning年度引用學(xué)科排名




書目名稱Neural-Symbolic Learning and Reasoning讀者反饋




書目名稱Neural-Symbolic Learning and Reasoning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:16:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:16:09 | 只看該作者
地板
發(fā)表于 2025-3-22 08:06:03 | 只看該作者
5#
發(fā)表于 2025-3-22 09:17:18 | 只看該作者
Towards Understanding the?Impact of?Graph Structure on?Knowledge Graph Embeddingsthodologies for producing KGs, which?span notions of expressivity, and are tailored for different use-cases and domains. Now, as neurosymbolic methods rise in prominence, it?is important to understand how the development of KGs according?to these methodologies impact downstream tasks, such as link p
6#
發(fā)表于 2025-3-22 14:49:34 | 只看該作者
7#
發(fā)表于 2025-3-22 19:49:27 | 只看該作者
Metacognitive AI: Framework and?the?Case for?a?Neurosymbolic Approachgy. In this position paper,?we examine the concept of applying metacognition to artificial intelligence. We introduce a framework for understanding metacognitive artificial intelligence (AI) that we call TRAP: transparency, reasoning, adaptation, and perception. We discuss each of these aspects in-t
8#
發(fā)表于 2025-3-22 21:56:16 | 只看該作者
Enhancing Logical Tensor Networks: Integrating Uninorm-Based Fuzzy Operators for?Complex Reasoning between t-norms and t-conorms,?offer unparalleled flexibility and adaptability, making them ideal?for modeling the complex, often ambiguous relationships inherent?in real-world data. By embedding these operators into Logic Tensor Networks, we present a methodology that significantly increases?the n
9#
發(fā)表于 2025-3-23 03:37:07 | 只看該作者
Parameter Learning Using Approximate Model Counting these hybrid models, these methods use a knowledge compiler to turn the symbolic model into a differentiable arithmetic circuit, after which gradient descent can be performed. However, these methods require compiling a reasonably sized circuit, which is not always possible, as for many symbolic pro
10#
發(fā)表于 2025-3-23 08:51:35 | 只看該作者
Large-Scale Knowledge Integration for?Enhanced Molecular Property Predictionitical for advancements?in drug discovery and materials science. While recent work?has primarily focused on data-driven approaches, the KANO?model introduces a novel paradigm by incorporating knowledge-enhanced pre-training. In this work, we expand upon KANO by integrating?the large-scale ChEBI know
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 07:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马公市| 左云县| 平顶山市| 麻栗坡县| 安康市| 马龙县| 图片| 海林市| 金乡县| 石泉县| 靖边县| 喀什市| 大厂| 重庆市| 蓝山县| 平潭县| 承德市| 辽中县| 温宿县| 东乡县| 辛集市| 城固县| 淳安县| 甘孜县| 瑞昌市| 昭苏县| 西昌市| 大化| 桂阳县| 班戈县| 尚志市| 武冈市| 弥勒县| 黑龙江省| 泌阳县| 平远县| 屯昌县| 洪江市| 肥西县| 开原市| 金坛市|