找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural-Symbolic Learning and Reasoning; 18th International C Tarek R. Besold,Artur d’Avila Garcez,Benedikt Wagn Conference proceedings 2024

[復(fù)制鏈接]
樓主: 瘦削
11#
發(fā)表于 2025-3-23 12:01:39 | 只看該作者
12#
發(fā)表于 2025-3-23 16:13:34 | 只看該作者
On the?Value of?Labeled Data and?Symbolic Methods for?Hidden Neuron Activation Analysistional Neural Network. Our approach uses?a Wikipedia-derived concept hierarchy with approx. 2 million classes as background knowledge, and deductive reasoning based Concept Induction for explanation generation. Additionally, we explore?and compare the capabilities of off-the-shelf pre-trained multim
13#
發(fā)表于 2025-3-23 22:00:21 | 只看該作者
Concept Induction Using LLMs: A?User Experiment for?Assessmentraditional post-hoc algorithms, while useful, often struggle to deliver interpretable explanations. Concept-based models offer a promising avenue by incorporating explicit representations of concepts to enhance interpretability. However, existing research on automatic concept discovery methods?is of
14#
發(fā)表于 2025-3-24 01:25:12 | 只看該作者
Error-Margin Analysis for?Hidden Neuron Activation Labelsence. While existing literature in explainable AI emphasizes the importance of labeling neurons with concepts to understand their functioning, they mostly focus on identifying what stimulus activates a neuron in most cases; this corresponds to the notion of . in information retrieval. We argue that
15#
發(fā)表于 2025-3-24 03:49:40 | 只看該作者
LENs for?Analyzing the?Quality of?Life of?People with?Intellectual Disabilityintellectual disability and uses?a framework in the literature of neurosymbolic AI, specifically?the family of interpretable DL named logic explained networks,?to provide explanations for the predictions. By integrating explainability, our research enhances the richness of?the predictions and qualit
16#
發(fā)表于 2025-3-24 08:08:14 | 只看該作者
ECATS: Explainable-by-Design Concept-Based Anomaly Detection for?Time Seriestion. However, the complexity inherent in Cyber Physical Systems (CPS) creates a challenge when it comes?to explainability methods. To overcome this inherent lack?of interpretability, we propose ECATS, a concept-based neuro-symbolic architecture where concepts are represented as Signal Temporal?Logi
17#
發(fā)表于 2025-3-24 14:21:13 | 只看該作者
18#
發(fā)表于 2025-3-24 14:56:13 | 只看該作者
19#
發(fā)表于 2025-3-24 21:45:45 | 只看該作者
e writing of the present book: Almost every topic that we taughtrequiredsomeskillsinalgebra,andinparticular,computeral- bra! From positioning to transformation problems inherent in geodesy and geoinformatics, knowledge of algebra and application of computer algebra software were required. In prepari
20#
發(fā)表于 2025-3-25 02:12:21 | 只看該作者
Conference proceedings 2024celona, Spain during September 9-12th, 2024...The 30 full papers and 18 short papers were carefully reviewed and selected from 89 submissions, which presented the latest and ongoing research work on neurosymbolic AI.?Neurosymbolic AI aims to build rich computational models and systems by combining n
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 04:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
聊城市| 交城县| 永定县| 宾阳县| 和龙市| 娄底市| 大荔县| 太白县| 东光县| 永城市| 贵州省| 鸡泽县| 海淀区| 崇礼县| 蛟河市| 乌拉特后旗| 星子县| 梅州市| 汝南县| 西乌珠穆沁旗| 宣化县| 文山县| 永川市| 永兴县| 海南省| 攀枝花市| 沾化县| 澄江县| 闸北区| 罗江县| 大石桥市| 聂拉木县| 韩城市| 台东市| 涞水县| 洛宁县| 琼海市| 株洲市| 宕昌县| 斗六市| 若羌县|