找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Networks for Identification, Prediction and Control; Duc Truong Pham,Xing Liu Book 1995 Springer-Verlag London Limited 1995 backpro

[復(fù)制鏈接]
查看: 39252|回復(fù): 43
樓主
發(fā)表于 2025-3-21 18:27:40 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Neural Networks for Identification, Prediction and Control
編輯Duc Truong Pham,Xing Liu
視頻videohttp://file.papertrans.cn/664/663717/663717.mp4
圖書封面Titlebook: Neural Networks for Identification, Prediction and Control;  Duc Truong Pham,Xing Liu Book 1995 Springer-Verlag London Limited 1995 backpro
描述In recent years, there has been a growing interest in applying neural networks to dynamic systems identification (modelling), prediction and control. Neural networks are computing systems characterised by the ability to learn from examples rather than having to be programmed in a conventional sense. Their use enables the behaviour of complex systems to be modelled and predicted and accurate control to be achieved through training, without a priori information about the systems‘ structures or parameters. This book describes examples of applications of neural networks In modelling, prediction and control. The topics covered include identification of general linear and non-linear processes, forecasting of river levels, stock market prices and currency exchange rates, and control of a time-delayed plant and a two-joint robot. These applications employ the major types of neural networks and learning algorithms. The neural network types considered in detail are the muhilayer perceptron (MLP), the Elman and Jordan networks and the Group-Method-of-Data-Handling (GMDH) network. In addition, cerebellar-model-articulation-controller (CMAC) networks and neuromorphic fuzzy logic systems are als
出版日期Book 1995
關(guān)鍵詞backpropagation; control; evolution; fuzzy; fuzzy logic; identification; learning; logic; modeling; network; n
版次1
doihttps://doi.org/10.1007/978-1-4471-3244-8
isbn_softcover978-1-4471-3246-2
isbn_ebook978-1-4471-3244-8
copyrightSpringer-Verlag London Limited 1995
The information of publication is updating

書目名稱Neural Networks for Identification, Prediction and Control影響因子(影響力)




書目名稱Neural Networks for Identification, Prediction and Control影響因子(影響力)學(xué)科排名




書目名稱Neural Networks for Identification, Prediction and Control網(wǎng)絡(luò)公開度




書目名稱Neural Networks for Identification, Prediction and Control網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Neural Networks for Identification, Prediction and Control被引頻次




書目名稱Neural Networks for Identification, Prediction and Control被引頻次學(xué)科排名




書目名稱Neural Networks for Identification, Prediction and Control年度引用




書目名稱Neural Networks for Identification, Prediction and Control年度引用學(xué)科排名




書目名稱Neural Networks for Identification, Prediction and Control讀者反饋




書目名稱Neural Networks for Identification, Prediction and Control讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:13:02 | 只看該作者
Neural Networks for Identification, Prediction and Control978-1-4471-3244-8
板凳
發(fā)表于 2025-3-22 03:26:33 | 只看該作者
地板
發(fā)表于 2025-3-22 06:07:05 | 只看該作者
Book 1995earning algorithms. The neural network types considered in detail are the muhilayer perceptron (MLP), the Elman and Jordan networks and the Group-Method-of-Data-Handling (GMDH) network. In addition, cerebellar-model-articulation-controller (CMAC) networks and neuromorphic fuzzy logic systems are als
5#
發(fā)表于 2025-3-22 12:22:52 | 只看該作者
orks and learning algorithms. The neural network types considered in detail are the muhilayer perceptron (MLP), the Elman and Jordan networks and the Group-Method-of-Data-Handling (GMDH) network. In addition, cerebellar-model-articulation-controller (CMAC) networks and neuromorphic fuzzy logic systems are als978-1-4471-3246-2978-1-4471-3244-8
6#
發(fā)表于 2025-3-22 13:18:00 | 只看該作者
Dynamic System Identification Using Recurrent Neural Networks,lements are connected in such a way that all signals flow in one direction from input units to output units. In recurrent networks there are both feedforward and feedback connections along which signals can propagate in opposite directions.
7#
發(fā)表于 2025-3-22 20:28:08 | 只看該作者
Modelling and Prediction Using GMDH Networks, identification methods include simplicity of implementation and good approximation properties [Warwick et aI, 1992]. In feedforward network based identification schemes, neural networks are used to represent the implied static mapping between the available input and output data. The network structu
8#
發(fā)表于 2025-3-22 22:39:20 | 只看該作者
9#
發(fā)表于 2025-3-23 01:37:37 | 只看該作者
10#
發(fā)表于 2025-3-23 05:37:21 | 只看該作者
Neuromorphic Fuzzy Controller Design,l network which can be trained using a Genetic Algorithm (GA). The GA is employed to determine the membership functions for the input variable, the quantisation levels of the output variable and the elements of the relation matrix of the FLC. The reasons for such a neuromorphic FLC are provided. The
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 18:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
静宁县| 永丰县| 崇明县| 徐闻县| 灯塔市| 开封市| 师宗县| 卢氏县| 米林县| 彭泽县| 平南县| 太仆寺旗| 乾安县| 瑞金市| 绍兴县| 长汀县| 普安县| 丹凤县| 大城县| 洛宁县| 肥东县| 怀安县| 甘孜| 舞阳县| 磐石市| 黔西县| 清丰县| 德令哈市| 江门市| 连山| 新密市| 收藏| 鄂州市| 碌曲县| 抚松县| 谷城县| 甘孜县| 香港 | 清水河县| 迭部县| 武强县|